134 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Сверлильный станок для печатных плат своими руками: чертежи, фото, видео

Сверлильный станок для печатных плат своими руками: чертежи, фото, видео

Сверлильный станок для печатных плат относится к категории мини-оборудования специального назначения. При желании такой станок можно сделать своими руками, используя для этого доступные комплектующие. Любой специалист подтвердит, что без использования подобного аппарата трудно обойтись при производстве электротехнических изделий, элементы схем которых монтируются на специальных печатных платах.

Простой мини станок для печатных плат

Шаг 1: Планирование работ / необходимые материалы

Подобная сверлилка заводского изготовления стоит больших денег и не всегда может удовлетворить ваши потребности.

В качестве дрели станка применим пневмошлифмашину с цанговым зажимом с частотой вращения шпинделя 56 000 об/мин и посадкой применяемого расходника диаметром 3 мм.

Чтобы подача шпинделя была четко вертикальной, используем линейную направляющую рельсового типа в качестве самоцентрирующегося устройства вертикальной подачи.

Список частей и материалов для маленького самодельного сверлильного станка для печатных плат:

  • Обрезки стальных труб квадратного сечения размером 38*38 мм.
  • Пневматическая шлифмашинка с цанговым зажимом.
  • Линейная направляющая.
  • Линейка из алюминиевого V-образного профиля.
  • Стальной уголок 40*40 мм.
  • Кусок МДФ-плиты или доски.
  • Две пружины.
  • Набор различных винтов, болтов, шайб и гаек.

2 Конструкция станка

Конструкция мини-станка для обработки печатных плат имеет довольно простую схему. По сути, этот станок мало чем отличается от стандартных сверлильных моделей, только он намного меньше и имеет несколько нюансов. Практически всегда мы рассматриваем настольный сверлильный мини-агрегат, так как он будет иметь размеры, что редко превышают отметку в 30 см.

Если рассматривать самодельный образец, то он может быть чуть больше, но только за счет того, что человек, который собирал его своими руками, просто не смог оптимизировать конструкцию должным образом. Такое бывает, если под руками попросту не находится подходящих деталей.

В любом случае станок, даже если он собран своими руками, будет иметь небольшие габариты и весить до 5 килограмм.

Опишем сейчас непосредственно конструкцию станка, а также детали, из которых его надо изготовить. В качестве основных составляющих при сборке мини-устройства для сверления плат используют:

  • станину;
  • переходную стабилизирующую рамку;
  • планку для перемещения;
  • амортизатор;
  • ручку для манипуляций с высотой;
  • крепление для движка;
  • движок;
  • блок питания;
  • цангу и переходники.

Так выглядит готовый самодельный сверлильный станок для печатных плат

Итак, список используемого оборудования достаточно объемный, но на самом деле ничего сложного здесь нет.

к меню ↑

2.1 Разбор конкретных деталей

Обратимся теперь к конкретным деталям, что уже были названы выше, а также дадим рекомендации по их подбору.

Для начала отметим, что мы сейчас описываем самодельный станок, который по сути можно собрать из подручных средств. Конструкция заводских образцов отличается от описанной нами только применением специализированных материалов и деталей, которые в домашних условиях создать практически невозможно. Придется покупать.

Начинается самодельный мини-станок, равно как и любой другой станок, со станины. Станина выполняет функции основания, на ней держится вся конструкция, на нее же монтируют поддерживающую деталь, на которой крепится обрабатываемая плата.

Станину желательно делать из тяжелой металлической рамки. Вес ее должен быть больше, чем вес всей остальной конструкции. Причем расхождение может быть довольно внушительным. Только так вы добьетесь стабильности агрегата во время работы. Особенно это касается моделей, что собираются своими руками.

И не стоит обманываться, когда видите приставку мини. Мини-станок – это такой же станок, и он все так же требует качественной стабилизации. Под станину часто прикручивают ножки или что-то подобное, чтобы дополнительно зафиксировать ее положение.

Самодельный сверлильный станок со стабилизационной рамкой

Стабилизирующая рамка является креплением для всего механизма. Ее делают из рейки, уголка или чего-то подобного. Предпочтительно использовать деталь. Планка для перемещения может быть самой разнообразной конструкции и часто совмещается с амортизатором. Иногда, амортизатор и сам является планкой для перемещения.

Эти две детали выполняют функции вертикального смещения станка во время работы. Благодаря им, станок можно быстро и без лишних усилий эксплуатировать.

Вариантов решений для выполнения таких деталей есть очень много. Начиная от самодельных или снятых с офисной мебели раздвижных реек на пружине, до профессиональных амортизаторов масляного типа.

Ручка для манипуляций крепится непосредственно к корпусу станка, амортизатору или стабилизирующей рейке. С ее помощью можно осуществлять давление на конструкцию, опуская и поднимая ее по своему желанию.

К стабилизирующей рамке уже прикрепляют планку для двигателя. Это может быть даже обычный деревянный брусок. Его задача – вывод движка на нужное расстояние и его надежная фиксация.

Движок монтируют на крепление. В качестве движка тоже можно пользоваться огромным количеством деталей. Начиная от дрели, и заканчивая движками, что сняты с принтеров, дисководов и другой офисной техники.

Сверла для сверления отверстий в печатных платах

К движку цепляют цанги и переходники, которые будут основание для крепления сверла. Тут уже можно дать только общие рекомендации, так как переходники всегда подбираются индивидуально. Влияние на их выбор окажет вал двигателя, его мощность, тип используемого сверла и т.д.

Блок питания для мини-станка подбирается такой, чтобы он мог обеспечивать движок нужным напряжением в достаточных количествах.

2.2 Технология сборки станка

Теперь обратимся к общему алгоритму, по которому ведется сборка агрегата для сверления печатных плат своими руками.

  1. Монтируем станину, крепим к ней ножки.
  2. Устанавливаем рамку держателя основной конструкции на станину.
  3. Крепим к рамке механизм перемещения и амортизатор.
  4. Монтируем крепление для движка, как правило, оно фиксируется на рамку перемещения.
  5. Устанавливаем ручку на крепление для двигателя.
  6. Устанавливаем движок и регулируем его положение.
  7. Прикручиваем к нему цангу и переходники.
  8. Монтируем блок питания, подключаем его к движку и сети.
  9. Подбираем и фиксируем сверло.
  10. Тестируем работу механизма.
Читать еще:  Самодельный щуп на мультиметр с регулировкой

Все соединения и их тип можете подбирать по своему усмотрению. Однако рекомендуется использовать болты и гайки, чтобы иметь возможность в нужный момент разобрать конструкцию, заменить ее составляющие или улучшить всю схему действия станка.
к меню ↑

2.3 Самодельный станок для сверления печатных плат (видео)

Как устроен станок для сверления отверстий в печатных платах

От классического сверлильного оборудования станок для формирования отверстий в печатных платах отличается миниатюрными размерами и некоторыми особенностями своей конструкции. Габариты таких станков (в том числе и самодельных, если для их изготовления правильно подобраны комплектующие и их конструкция оптимизирована) редко превышают 30 см. Естественно, и вес их незначительный – до 5 кг.

Конструкция самодельного сверлильного станка

Если вы собираетесь изготовить сверлильный мини-станок своими руками, вам необходимо подобрать такие комплектующие, как:

  • несущая станина;
  • стабилизирующая рамка;
  • планка, которая будет обеспечивать перемещение рабочей головки;
  • амортизирующее устройство;
  • ручка для управления перемещением рабочей головки;
  • устройство для крепления электродвигателя;
  • сам электрический двигатель;
  • блок питания;
  • цанга и переходные устройства.

Чертежи деталей станка (нажмите для увеличения)

Чертеж консоли станка

Разберемся в том, для чего предназначены все эти узлы и как из них собрать самодельный мини-станок.

Делаем сверлильный станок для печатных плат своими руками.

Надоело , в общем то, сверлить платы ручной сверлилкой поэтому решено было изготовить небольшой сверлильный станок исключительно для печатных плат. Конструкций в интернете полным полно, на любой вкус. Посмотрев несколько описаний подобных сверлилок, пришел к решению повторить сверлильный станок на основе элементов от ненужного, старого CD ROM’a. Разумеется, для изготовления этого сверлильного станочка придется использовать материалы те, что находятся под рукой.

От старого CD ROM’a для изготовления сверлильного станочка берем только стальную рамку со смонтированными на ней двумя направляющими и каретку, которая передвигается по направляющим. На фото ниже все это хорошо видно.

На подвижной каретке будет укреплен электродвигатель сверлилки. Для крепления электродвигателя к каретке был изготовлен Г-образный кронштейн из полоски стали толщиной 2 мм.

В кронштейне сверлим отверствия для вала двигателя и винтов его крепления.

В первом варианте для сверлильного станочка был выбран электродвигатель типа ДП25-1,6-3-27 с напряжением питания 27 В и мощностью 1,6 Вт. Вот он на фото:

Как показала практика, этот двигатель слабоват для выполнения сверлильных работ. Мощности его ( 1,6 Вт) недостаточно- при малейшей нагрузке двигатель просто останавливается.

Вот так выглядел первый вариант сверлилки с двигателем ДП25-1,6-3-27 на стадии изготовления:

Поэтому пришлось искать другой электродвигатель-помощнее. А изготовление сверлилки застопорилось…

Продолжение процесса изготовления сверлильного станочка.

Через некоторое время попал в руки электродвигатель от разобранного неисправного струйного принтера Canon:

На двигателе нет маркировки, поэтому его мощность неизвестна. На вал двигателя насажена стальная шестерня. Вал этого двигателя имеет диаметр 2,3 мм. После снятия шестерни, на вал двигателя был надет цанговый патрончик и сделано несколько пробных сверлений сверлом диаметром 1 мм. Результат был обнадеживающим- «принтерный» двигатель был явно мощнее двигателя ДП25-1,6-3-27 и свободно сверлил текстолит толщиной 3мм при напряжении питания 12 В.

Поэтому изготовление сверлильного станочка было продолжено…

Крепим электродвигатель с помощью Г-образного кронштейна к подвижной каретке:

Основание сверлильного станочка изготовлено из стеклотекстолита толщиной 10мм.

На фото – заготовки для основания станочка:

Для того, чтобы сверлильный станочек не ёрзал по столу во время сверления, на нижней стороне установлены резиновые ножки:

Конструкция сверлильного станочка –консольного типа, то есть несущая рамка с двигателем закреплена на двух консольных кронштейнах, на некотором расстоянии от основания. Это сделано для того, чтобы обеспечить сверление достаточно больших печатных плат. Конструкция ясна из эскиза:

Далее несколько изображений собранного сверлильного станочка.

Рабочая зона станочка, виден белый светодиод подсветки:

Вот так реализована подсветка рабочей зоны. На фото наблюдается избыточная яркость освещения. На самом деле-это ложное впечатление (это бликует камера)- в реальности все выглядит очень хорошо:

Консольная конструкция позволяет сверлить платы шириной не менее 130 мм и неограниченной ( в разумных пределах) длиной.

Замер размеров рабочей зоны:

На фото видно, что расстояние от упора в основание сверлильного станочка до оси сверла составляет 68мм, что и обеспечивает ширину обрабатываемых печатных плат не менее 130мм.

Для подачи сверла вниз при сверлении имеется нажимной рычаг-виден на фото:

Для удержания сверла над печатной платой перед процессом сверления, и возврата его в исходное положение после сверления, служит возвратная пружина, которая надета на одну из направляющих:

Система автоматической регулировки оборотов двигателя в зависимости от нагрузки.

Для удобства пользования сверлильным станочком было собрано и испытано два варианта регуляторов частоты вращения двигателя. В первоначальном варианте сверлилки с электродвигателем ДП25-1,6-3-27 регулятор был собран по схеме из журнала Радио №7 за 2010 год:

Этот регулятор работать как положено не захотел, поэтому был безжалостно выброшен в мусор.

Для второго варианта сверлильного станка, на основе электродвигателя от струйного принтера Canon, на сайте котов-радиолюбителей была найдена еще одна схема регулятора частоты вращения вала электродвигателя:

Данный регулятор обеспечивает работу электродвигателя в двух режимах:

  1. При отсутствии нагрузки или, другими словами, когда сверло не касается печатной платы, вал электродвигателя вращается с пониженными оборотами (100-200 об/мин).
  2. При увеличении нагрузки на двигатель регулятор увеличивает обороты до максимальных, тем самым обеспечивая нормальный процесс сверления.
Читать еще:  Как сделать простой ЭМИ излучатель своими руками!

Регулятор частоты вращения электродвигателя собранный по этой схеме заработал сразу без настройки. В моем случае частота вращения на холостом ходу составила около 200 об/мин. В момент касания сверла печатной платы-обороты увеличиваются до максимальных. После завершения сверления, этот регулятор снижает обороты двигателя до минимальных.

Регулятор оборотов электродвигателя был собран на небольшой печатной платке:

Транзистор КТ815В снабжен небольшим радиатором.

Плата регулятора установлена в задней части сверлильного станочка:

Здесь резистор R3 номиналом 3,9 Ом был заменен на МЛТ-2 номиналом 5,6 Ом.

Испытания сверлильного станка прошли успешно. Система автоматической регулировки частоты вращения вала электродвигателя работает четко и безотказно.

Небольшой видеоролик о работе сверлильного станка:

Update от 01.08.2017:

На плате управления кроме собственно регулятора оборотов двигателя расположен еще и простейший стабилизатор напряжения питания светодиода подсветки рабочей зоны. Полная схема платы управления:

Весь процесс сборки записан на видео:

Если следовать именно такой последовательности действий, то собирать станок будет очень просто.
Вот так вот выглядит полный набор всех комплектующих для сборки:

Комплектующие для сборки сверлильного станка

Помимо них для сборки потребуется простейший ручной инструмент. Отвертки, шестигранные ключи, плоскогубцы, кусачки и т.д.
Перед тем начинать собирать станок желательно обработать напечатанные детали. Удалить возможные наплывы, поддержки, а также пройти все отверстия сверлом соответствующего диаметра. Фанерные детали по линии реза могут пачкать гарью. Их можно также обработать наждачной бумагой.
После того, как все детали подготовлены начать проще с установки линейных подшипников. Они закрадываются внутрь напечатанных деталей и прикручиваются к боковым стенкам:

Установка линейных подшипников

Далее устанавливается ручка с шестерней. Вал вставляется в большое отверстие, на него устанавливается основание ручки и все это стягивается болтом на 8мм. Самой ручкой служит винт на М4.

Установка ручки и шестерни

Теперь можно собрать фанерное основание. Сначала боковые стенки устанавливаются на основание, а затем вставляется вертикальная стенка. В верхней части также есть дополнительная напечатанная деталь, которая задает ширину в верхней части. При закручивании винтов в фанеру не прикладывайте слишком большое усилие.

В столике на переднем отверстии необходимо сделать зенковку, чтобы винт с головой впотай не мешал сверлить плату. С торца также установлена напечатанная крепежная деталь.

Теперь можно приступить к сборке блока двигателя. Он прижимается двумя деталями и четырьмя винтами к подвижному основанию. При его установке необходимо следить, чтобы отверстия для вентиляции оставались открытыми. На основание он закрепляется при помощи хомутов. Сначала вал продевается в подшипник, а затем на нем защелкиваются хомуты. Также установите винт М3х35, который в будущем будет нажимать на микропереключатель.

Сборка блока двигателя

Микропереключатель устанавливается на прорези кнопкой в сторону двигателя. Позже его положение можно будет отклибровать.

Резинки накидываются на нижнюю часть двигателя и продеваются до “рогов”. Их натяжение надо отрегулировать так, чтобы двигатель поднимался до самого конца.

Теперь можно припаять все провода. На блоке двигателя и рядом с микропереключателем есть отверстия для хомутов, чтобы закрепить провод. Также этот провод можно провести внутри станка и вывести с обратной стороны. Убедитесь, что припаиваете провода на микропереключателе к нормально замкнутым контактам.

Осталось только поставить пенал для сверел. Верхнюю крышку нужно зажать сильно, а нижнюю закрутить очень слабо, используя для этого гайку с нейлоновой вставкой.

Пенал для сверел

Пенал для сверел

На этом сборка окончена!
Из доработок вы можете проклеить фанерные детали, для увеличения жесткости. Можно также сделать регулятор оборотов двигателя.

Материалы и детали для изготовления

Колонна

Самая важная часть такого станка — это колонна, она должна обеспечить высокоточное перемещение сверла без люфтов строго вертикально вверх и вниз.

Однажды в интернете мне попалось видео об изготовлении небольшого станка ЧПУ, так вот, роль направляющих в нем играли адаптированные в конструкцию газовые упоры крышки багажника автомобиля. Мне очень понравилась эта идея, и благодаря ей был построен этот миниатюрный сверлильный станок.

Внимание! Газовые упоры находятся под давлением!
Поэтому вскрывать их нужно с предельной осторожностью.

Со временем газовые упоры теряют часть давления и с тем самым свою работоспособность, и отправляются на свалку, поэтому найти их, например на каком нибудь «авторазборе» не должно составить труда.

Упоры представляют из себя высокоточный каленый шток и корпус, в котором он скользит — именно это и нужно!

Помимо газа внутри упора находится немного масла.

Лишние части корпуса и штоков были отпилены болгаркой. Мне повезло, в моем случае всё прошло без проблем, в доставшихся мне упорах почти не осталось давления.

Итоговый размер заготовок для колон такой: 85 мм часть направляющего корпуса и 210 мм примерная длина штока.

Оставил клапаны упоров без изменения, добавил в них несколько капель масла, и это обеспечило плавность хода консоли вниз и замедленный возврат вверх за счет демпфирующего клапана.

Консоль

В данном случае это часть, объединяющая крепеж миниатюрного мотора с цанговым зажимным патроном и крепежом колон.

Для простоты конструкцию было решено изготовить из куска фанеры. Мотор и направляющие корпуса колонн без особых заморочек закреплены широкими скобами, вырезанными из мягкого стального профиля. Такой профиль используется при строительстве стеновых перегородок.

Читать еще:  Как сделать диван своими руками

Общая ширина консоли составила 220 мм, а между осями колон 170 мм.

Вертикальный ход консоли составил 34 мм.

Мотор

Миниатюрный китайский 12 вольтовый мотор постоянного напряжения, заказанный с Алиэкспресс. В комплекте с ним поставлялся патрон и 6 сменных цанг разного диаметра.

Размер корпуса мотора: длина примерно 39 мм, диаметр 28,6 мм.

Мотор рассчитан на работу от постоянного напряжения 12 В и имеет потребление тока 500мA. Из чего следует, что расчетная мощность мотора 6Вт.

Схему подключения смотрите далее.

Станина

Это жесткое основание станка и опора для колон, стол для размещения предназначенной для сверления заготовки и корпус, в котором расположены электронные органы управления станком.

Станина состоит из 4 кусков ДСП и куска деревянной рейки, выполняющей роль опоры рукоятки подъема и опускания консоли.

Размер площади станины с учетом боковых панелей — 235 х 210 мм.

Единственная сложность изготовления состоит в том, что нужно максимально точно просверлить по два отверстия в верхней и нижней панели станины, в которые будут вставлены штоки направляющих колонн. Отверстия должны обеспечить строгую параллельность штоков колон по отношению друг к другу, а иначе при передвижении консоли по ним будет происходить заклинивание. Также необходимо обеспечить строгую вертикальность движения консоли и следовательно сверла.

На нижней стороне верхней панели смонтированы регулятор оборотов двигателя , кнопка включения мотора и подсветки.

Плата регулятора оборотов закреплена на панели небольшими шурупами через 3 мм нейлоновые проставки ( спейсеры ).

Также на этой панели расположены скобки, фиксирующие штоки колон.

Схему подключения смотрите далее.

К днищу станины прикреплены резиновые ножки от каких-то старых приборов.

Регулятор оборотов, подсветка, схема подключения и питание

Схема устройства очень проста, и работает от 12 вольт постоянного напряжения. Мотор потребляет 0,5 А, а значит для всей схемы включая подсветку потребуется блок питания мощностью примерно 10 вт.

Регулятор оборотов заказан с Aliexpress, больше информации о нем читайте в отдельном небольшом обзоре.

Кнопка включения/выключения отключает всю схему — мотор и подсветку.

Подсветка выполнена из 4 SMD светодиодов и 4 резисторов 10 кОм и мощностью рассеивания 1/4 вт навесным монтажом.

На схеме указан диапазон подходящих резисторов от 500 Ом до 10 кОм. При использовании резисторов 500 Ом или 1 кОм яркость отличается не сильно, но 500 ом греется сильнее, поэтому нужен резистор большей мощности рассеивания, например 0,5 — 1 Вт. А резисторы 1 — 10 кОм можно использовать 0,25 Вт.

Мой выбор пал на 10 кОм резисторы, с ними светодиоды светят примерно в полсилы, ничего не греется, и я подумал, что так будет удобнее — плата не будет бликовать в ярком свете.

У данных SMD светодиодов средняя контактная площадка предназначена для отвода тепла и является общим контактом с ближайшим с ней крайним выводом. Для надежности навесного монтажа вывод резистора распаян именно на эти два контакта.

Рукоятка подъема и опускания консоли, возвратные пружины

Рукоятка выполнена из ручки для скребка из комплекта строительного фена.

В первом варианте сборки рукоятка крепилась на одном шарнире, но это вызывало некоторое подклинивание при опускании консоли. Потом я попробовал добавить небольшую перемычку в шарнир, добавляющую свободу в движение рукоятки, что в свою очередь обеспечило плавность хода консоли.

Внутрь направляющих корпусов колон вставлены небольшие пружины и закреплены уголками размером 32 х 32 мм. Внутри корпуса пружины опираются на поршень, расположенный на штоке.

Размер пружины 90 х 17 мм. Эти пружины валялись у меня в запасах всяких запчастей, а когда-то давно, лет 20 назад, они работали в игрушечных пластиковых китайских пневматических пистолетах.

Описание станочной конструкции

Самым основным в конструкции машины становится мощный двигатель. В его комплект входят

  • патрон;
  • ключ;
  • сверла с десяток самого разного диаметра.

Многие любителей покупают такие двигатели и работают с платами, удерживая в руках такой чудо инструмент. Но можно всегда идти дальше и опираясь на такой движок, сделать своими руками полноценный агрегат с открытыми чертежами. Полированные валы и линейные подшипники можно смело использовать для линейного перемещения двигателя. В таком случае появиться прекрасная возможность минимизировать люфты.

В широком доступе хорошо распространены линейные подшипники. Как дешевый вариант можно использовать фанеру, которую можно применить важным элементом для основной станины. Так же можно воспользоваться оргстеклом или сталью для вырезания тех же самых деталей. Некоторые из мелких сложных деталей печатаются на 3D-принтере.

Отличным приспособлением для поднятия двигателя в положение исходного режима пользуются спросом парочка канцелярских резинок, но в верхнем положении мотор благодаря микропереключателю отключается в самостоятельном режиме.

Стоит отметить, что нужно предусмотреть местечко для хранения ключа в маленькой сверловой пенале, в которой имеются пазы разной глубины для удобного хранения сверла с разнообразным диаметром.

Шаг 5: Финальные штрихи

Еще одну пружину необходимо установить между задней частью рамы и рельсом направляющей. Это позволит убрать люфт в устройстве подачи, который может появиться со временем.

Сверлильный станок готов. Кладем печатную плату на опорную доску и, нажимая на дрель сверху, сверлим отверстия. Для удобства работы можно добавить в конструкцию ручку, при нажатии на которую дрель будет опускаться.

Отверстия, выполненные на данном миниатюрном сверлильном станке получаются идеально ровными.

Рассказываю как сделать какую-либо вещь с пошаговыми фото и видео инструкциями.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Статьи c упоминанием слов: