5 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Катушка индуктивности

Катушка индуктивности

Что вы себе представляете под словом “катушка” ? Ну… это, наверное, какая-нибудь “фиговинка”, на которой намотаны нитки, леска, веревка, да что угодно! Катушка индуктивности представляет из себя точь-в-точь то же самое, но вместо нитки, лески или чего-нибудь еще там намотана обыкновенная медная проволока в изоляции.

Изоляция может быть из бесцветного лака, из ПВХ-изоляции и даже из матерчатой. Тут фишка такая, что хоть и провода в катушке индуктивности очень плотно прилегают к друг другу, они все равно изолированы друг от друга. Если будете мотать катушки индуктивности своими руками, ни в коем случае не вздумайте брать обычный медный голый провод!

Реактивное сопротивление катушки индуктивности

Идеальная катушка индуктивности не обладает классическим омическим сопротивлением, сопротивление дросселя постоянному току равно нулю. Но если к катушке индуктивности приложить переменное напряжение, то за счет периодического накопления энергии в магнитном поле и последующей отдачи ее, в цепи будет протекать конечный ток.

Причем ток через дроссель не зависит от напряжения в текущий момент, а зависит от истории изменения напряжения, то есть определяется первообразной напряжения от времени. Так, если на дроссель подано синусоидальное напряжение, то ток будет иметь форму минус косинуса. Именно благодаря такому фазовому сдвигу на идеальной катушке индуктивности не рассеивается тепловая энергия.

На реальных катушках индуктивности и в цепях вокруг них тепловая энергия, конечно, рассеивается, так как все они обладают ненулевым омическим сопротивлением. Именно на нем и рассеивается мощность.

Если рассматривать синусоидальное напряжение и оперировать понятиями действующего напряжения и тока, то можно написать формулу, напоминающую закон Ома для резисторов. [Действующий ток через дроссель] = [Действующее напряжение на дросселе] / [Z], где [Z] = (2 * ПИ * [Частота напряжения] * [Индуктивность дросселя]). Эта формула полезна при расчете индуктивных делителей переменного напряжения и фильтров высших и низших частот.

Расчет параметров катушки индуктивности

Протекающий по проводу электрический ток создаёт вокруг него электромагнитное поле. Соотношение величины поля к силе тока называется индуктивностью. Если провод свернуть кольцом или намотать на каркас, то получится катушка индуктивности. Её параметры рассчитывают по определённым формулам.

Читать еще:  Часы наручные «скелетон» своими руками

Расчёт индуктивности прямого провода

Индуктивность прямого стержня – 1-2мкГн на метр. Она зависит от его диаметра. Точнее можно рассчитать по формуле:

  • d – диаметр провода,
  • l – длина провода.

Эти величины нужно измерять в метрах (м). При этом результат будет иметь размерность микрогенри (мкГн). Вместо натурального логарифма ln допустимо использовать десятичный lg, который в 2,3 раза меньше.

Предположим, что какая-то деталь подключена проводами длиной 4 см и диаметром 0,4 мм. Произведя при помощи калькулятора расчет по выше приведённой формуле, получаем, что индуктивность каждого из этих проводов составит (округлённо) 0,03 мкГн, а двух – 0,06 мкГн.

Ёмкость монтажа составляет порядка 4,5пФ. При этом резонансная частота получившегося контура составит 300 МГц. Это диапазон УКВ.

Важно! Поэтому при монтаже устройств, работающих в частотах УКВ, длину выводов деталей нужно делать минимальной.

Расчёт однослойной намотки

Для увеличения индуктивности провод сворачивается кольцом. Величина магнитного потока внутри кольца выше примерно в три раза. Рассчитать её можно при помощи следующего выражения:

L = 0,27D(ln8D/d-2), где D – диаметр кольца, измеренный в метрах.

При увеличении количества витков индуктивность продолжает расти. При этом индукция отдельных витков влияет на соседние, поэтому получившиеся параметры пропорциональны не количеству витков N, а их квадрату.

Дроссель с сердечником

Параметры обмотки, намотанной на каркас, диаметром намного меньше длины рассчитывается по формуле:

Она справедлива для устройства большой длины или большого тора.

Размерность в ней дана в метрах (м) и генри (Гн). Здесь:

  • 0 = 4•10-7 Гн/м – магнитная константа,
  • S = D2/4 – площадь поперечного сечения обмотки, магнитная проницаемость магнитопровода, которая меньше проницаемости самого материала и учитывает длину сердечника; в разомкнутой конструкции она намного меньше, чем у материала.

Например, если стержень антенны изготовить из феррита с проницаемостью 600 (марки 600НН), то у получившегося изделия она будет равна 150. При отсутствии магнитного сердечника = 1.

Для того чтобы использовать это выражение для расчёта обмоток, намотанных на тороидальном сердечнике, его необходимо измерять по средней линии «бублика». При расчёте обмоток, намотанных на железе Ш-образной формы без воздушного зазора, длину пути магнитного потока измеряют по средней линии сердечника.

Катушка с Ш-образным сердечником

В расчёте диаметр провода не учитывается, поэтому в низкочастотных конструкциях сечение провода выбирается по таблицам, исходя из допустимого нагрева проводника.

В высокочастотных устройствах, так же как и в остальных, стремятся свести омическое сопротивление к минимуму для достижения максимальной добротности прибора. Простое повышение сечения провода не помогает. Это приводит к необходимости наматывать обмотку в несколько слоёв. Но ток ВЧ идёт преимущественно по поверхности, что приводит к увеличению сопротивления. Добротность в высокочастотных элементах растёт вместе с увеличением всех размеров: длины и диаметров обмотки и провода.

Читать еще:  Бурение скважины своими руками, какую машину собрать?

Максимальная добротность получается в короткой обмотке большого диаметра, с соотношением диаметр/длина, равным 2,5. Параметры такого устройства вычисляются по формуле:

В этой формуле все параметры измеряются в сантиметрах (см), а результат получается в микрогенри (мкГн).

По этой формуле рассчитывается также плоская катушка. Диаметр «D» измеряется по среднему витку, а длина «l» по ширине:

Многослойная намотка

Многослойная намотка без сердечника вычисляется по формуле:

Размеры здесь измеряются в сантиметрах (см), а результат получается в микрогенри (мкГн).

Добротность такого устройства зависит от способа намотки:

  • обычная плотная намотка – самая плохая, не более 30-50;
  • внавал и универсал;
  • «сотовая».

Для увеличения добротности при частоте до 10 мГц вместо обычного, одножильного провода, можно взять литцендрат или посеребренный проводник.

Справка. Литцендрат – это провод, скрученный из большого количества тонких изолированных друг от друга жил.

Литцендрат имеет большую поверхность, по сравнению с одножильным проводником того же сечения, поэтому на высоких частотах его сопротивление ниже.

Использование сердечника в высокочастотных устройствах повышает индуктивность и добротность катушки. Особенно большой эффект даёт использование замкнутых сердечников. При этом добротность дросселя зависит не от активного сопротивления провода, а от проницаемости магнитопровода. Рассчитывается такой прибор по обычным формулам для низкочастотных устройств.

Сделать катушку или дроссель можно самостоятельно. Перед тем, как её изготавливать, необходимо рассчитать индуктивность катушки по формулам или при помощи онлайн-калькулятора.

Основные параметры

К основным характеристикам катушки индуктивности можно отнести:

  • Индуктивность.
  • Силу тока (для подбора подходящего элемента при ремонте и проектировании это нужно учитывать).
  • Сопротивление потерь (в проводах, в сердечнике, в диэлектрике).
  • Добротность — отношение реактивного сопротивления к активному.
  • Паразитная емкость (емкость между витками, говоря простым языком).
  • Температурный коэффициент индуктивности — изменение индуктивности при нагреве или охлаждении элемента.
  • Температурный коэффициент добротности.

    Зачем нужен расчёт индуктивности

    Расчет индуктивности нужен, потому что конструктивно это могут быть по-разному выполненные катушки. Применение дросселей в разных отраслях электрики и электроники, их работа под влиянием постоянного и переменного тока требуют тщательного подбора индуктивности, добротности и стабильности работы. При выполнении своими руками дросселей заданного параметра L нужно выполнить расчёт. Для каждого типа индуктивного двухполюсника используется своя формула.

    Реактивное сопротивление катушки индуктивности

    Идеальная катушка индуктивности не обладает классическим омическим сопротивлением, сопротивление дросселя постоянному току равно нулю. Но если к катушке индуктивности приложить переменное напряжение, то за счет периодического накопления энергии в магнитном поле и последующей отдачи ее, в цепи будет протекать конечный ток.

    Читать еще:  Тайник из книги своими руками

    Причем ток через дроссель не зависит от напряжения в текущий момент, а зависит от истории изменения напряжения, то есть определяется первообразной напряжения от времени. Так, если на дроссель подано синусоидальное напряжение, то ток будет иметь форму минус косинуса. Именно благодаря такому фазовому сдвигу на идеальной катушке индуктивности не рассеивается тепловая энергия.

    На реальных катушках индуктивности и в цепях вокруг них тепловая энергия, конечно, рассеивается, так как все они обладают ненулевым омическим сопротивлением. Именно на нем и рассеивается мощность.

    Если рассматривать синусоидальное напряжение и оперировать понятиями действующего напряжения и тока, то можно написать формулу, напоминающую закон Ома для резисторов. [Действующий ток через дроссель] = [Действующее напряжение на дросселе] / [Z], где [Z] = (2 * ПИ * [Частота напряжения] * [Индуктивность дросселя]). Эта формула полезна при расчете индуктивных делителей переменного напряжения и фильтров высших и низших частот.

    Конструкция катушки

    Каркас устройства изготавливается из диэлектрика. Это может быть тонкий (нефольгированный) гетинакс, текстолит, а на тороидальных сердечниках –просто обмотка из лакоткани или аналогичного материала.

    Обмотка выполняется из одножильного или многожильного изолированного провода.

    Внутрь обмотки вставляется сердечник. Он изготавливается из железа, трансформаторной стали, феррита и других материалов. Он может быть замкнутым, тороидальным (бублик), квадратным или незамкнутым (стержень). Выбор материала зависит от условий работы: частоты, магнитного потока и других параметров.

    Кроме того, есть приборы, в которых сердечник отсутствует. Они характеризуются большой линейностью импеданса, но при намотке тороидальной формы обладают паразитной ёмкостью.

    Основные параметры

    К основным характеристикам катушки индуктивности можно отнести:

  • Индуктивность.
  • Силу тока (для подбора подходящего элемента при ремонте и проектировании это нужно учитывать).
  • Сопротивление потерь (в проводах, в сердечнике, в диэлектрике).
  • Добротность — отношение реактивного сопротивления к активному.
  • Паразитная емкость (емкость между витками, говоря простым языком).
  • Температурный коэффициент индуктивности — изменение индуктивности при нагреве или охлаждении элемента.
  • Температурный коэффициент добротности.

    Резюме

    Катушка индуктивности играет в электронике очень большую роль, особенно в приемопередающей аппаратуре. На катушках индуктивности строятся также различные фильтры для электронной радиоаппаратуры, а в электротехнике ее используют также в качестве ограничителя скачка силы тока.

    Ребята из Паяльника забабахали очень неплохой видос про катушку индуктивности. Советую посмотреть в обязательном порядке:

  • Ссылка на основную публикацию
    Статьи c упоминанием слов:
    Adblock
    detector