Переделка компьютерного блока питания на 24 вольта в регулируемый лабораторный источник своими руками
Переделка компьютерного блока питания на 24 вольта в регулируемый лабораторный источник своими руками
Сегодня стоимость лабораторного блока питания составляет примерно 10 тыс. рублей. Но, оказывается, есть вариант переделки компьютерного блока питания в лабораторный. Всего за тысячу рублей вы получаете защиту от короткого замыкания, охлаждение, защиту от перегрузки и несколько линий напряжения: 3В, 5В и 12В. Однако мы будем модифицировать его, чтобы получить диапазон от 1,5 до 24В, который идеально подойдет для большинства электроники.
Я считаю, что этот способ переделки компьютерного блока питания на 24 вольта лучший, учитывая, что я смог воплотить его в реальность своими руками всего в 14 лет.
ПРЕДУПРЕЖДЕНИЕ: Здесь ведется работа с током, будьте осторожны и соблюдайте меры безопасности!
- рулетка
- отвертка
- Компьютерный блок питания (рекомендую 250 Вт +) и кабель для него
- Проволочные защелки
- Паяльник
- Резистор на 10Ом 10Вт или больше (некоторые новые блоки питания не работают должным образом без нагрузки, поэтому резистор должен её обеспечить)
- переключатель
- 2 светодиода любого цвета (красный и зеленый подойдут лучше всего)
- Если вы используете светодиоды, понадобится 1 или 2 резистора на 330 Ом,
- Термоусадка
- Внешний корпус (можно поместить всё в оригинальный корпус, а можно взять другой).
В зависимости от того, какой метод для регулируемого блока питания из БП компьютера вы используете (подробнее об этом позже):
- Клеммные колодки
- Дрель
- Регулятор напряжения LM317 или LM338K
- Конденсаторы 100nF (керамика или тантал)
- Конденсаторы 1uF Электролитические
- Силовой диод 1N4001 или 1N4002
- Резистор 120 Ом
- Переменный резистор 5 кОм
- Разъемы
- Зажимы «крокодил»
Как сделать лабораторный источник питания своими руками
Подборка рекомендаций и ссылок по сборке лабораторного источника питания (ЛБП) своими собственными руками из доступных комплектующих. Вариантов сделать для себя точный блок питания с регулировкой множество — начиная от простых и бюджетных, заканчивая серьезными устройствами с мощной стабилизацией, связью с компьютером и удаленным программированием.
Программируемые и управляемые модули для ЛБП
Простой способ собрать для себя лабораторный источник питания — это взять управляемый модуль-преобразователь со стабилизацией питания. Одни из самых мощных на Алиэкспресс — это модули RD DPS5015 и DPS5020, с выходными токами 15 и 20 Ампер соответственно. Для удаленного управления выбирайте версии «С» — communication для работы через USB/Bluetooth/Wi-Fi. Модули RD DPH5005 имеют встроенный Buck Boost конвертер для повышения напряжения (можно питать 12/24 вольта и получить на выходе, 30-40-50В. Один из самых продвинутых программируемых преобразователей питания — это модель RD 6006 (подробный обзор). Предыдущий список модулей с интересными вариантами.
Компактные преобразователи питания
Не всегда нужны громоздкие источники и приборы, но достаточно бывает компактного преобразователя для подключения и быстрого теста самоделок. На выбор могу предложить несколько вариантов. Например, простой карманный источник питания, который работает от USB зарядки или павербанка — DP3A, с поддержкой быстрой зарядки QC3.0 и возможностью выставить нужный ток или напряжение со стабилизацией до 15W. Подробный обзор DP3A по ссылке. Чуть мощнее и в отдельном корпусе под блочный монтаж — преобразователь 32В/4А с встроенными защитами (OVP/OСР/ОРР) и стабилизацией тока и напряжения CC/CV, а также возможностью поднять выходное напряжение (Buck Boost). Еще один полезный для домашних самоделок источник — простой блок питания наподобие ноутбучного, но со встроенным показометром и регулировкой. Заявлена стабилизация напряжения мощность до 72W (максимум 3А на выходе).
Стационарные источники питания все-в-одном
Для стационарной работы я бы рекомендовал иметь дома хотя бы один мощный источник типа KORAD. Цифры в названии подобных ЛБП обычно показывают максимальные режимы питания: 30/60 Вольт и 5/10 Ампер. То есть KORAD KA3005 — это 30В/5А, модели 6005 стабилизирует большее выходное напряжение, а типа 3010 — больший ток (до 10 А). Плюс подобных источников — встроенный сетевой преобразователь на 220В.
Модули сетевого питания для сборки ЛБП
Для питания управляемых модулей нужен сетевой преобразователь. Я бы не рекомендовал брать дешевые «народные» платы питания, а предложил бы посмотреть в сторону корпусных БП. В таких уже продумано охлаждение и монтаж, присутствует некоторая регулировка выхода. На выбор предлагаются источники с выходным напряжением на 5V, 12V, 24V, 36V, 48V, 60V и мощностью до 400 Вт. Конечно, можно использовать и компьютерные источники питания АТХ (с выходом 12В и преобразователем типа DPH5005, или с переделкой для повышения выходного напряжения), и другие от старой аппаратуры.
Таким образом, можно на базе готовых модулей и источников тока создать свой удобный и точный блок лабораторного питания. За основу можно взять как старую технику, так и полностью готовые комплектующие с Алиэкспресс и радиомагазинов. Цены варьируются от $5 за простой преобразователь с экраном и стабилизацией, и до $100 за мощное устройство. Из полезных функций — наличие Buck Boost конвертера, который помогает повышать напряжение при недостатке входного, функция заряда аккумуляторов (с наличием встроенной защиты и счетчиков емкости), функция стабилизации тока, функции удаленного управления.
Лабораторный блок питания 30в 5а, результат
Плата управления собранная на макетке.
Плата основного диодного моста.
Транзисторы установлены на радиатор от Cooler Master CMDK8, этот боксовый куллер способен рассеивать мощность до 95 Вт.
Внутри блока расположен 80мм дополнительный вентилятор, охлаждающий диодный мост и трансформатор, а также обдувающий радиатор транзисторов с тыльной стороны.
Все это добро засунуто в добротный радиолюбительский корпус, оставшийся со времен СССР. Вот таким вышел у нас лабораторный блок питания своими руками.
Подключение цифрового вольтамперметра избавило нас от измерительных стрелочных приборов.
Демонстрация работы:
В работе с максимальным током в 5 А транзисторы остаются теплыми благодаря хорошей системе охлаждения, температура основного диодного моста также в норме, т.к. там используются мощные диоды Шоттки и вентилятор, который охлаждает этот мост и трансформатор. При полной нагрузке все таки происходит небольшой нагрев трансформатора. Вес блока составил порядка 4 кг.
Уже изготовив данный блок, пришла идея, как можно немного переделать схему и получить этот лабораторный блок питания с нуля вольт. Но это уже будет другая история…
- R1 = 2,2 кОм 1 Вт
- R2 = 82 Ом 1/4 Вт
- R3 = 220 Ом 1/4 Вт
- R4 = 4,7 кОм 1/4 Вт
- R5, R6, R13, R20, R21 = 10 кОм 1/4 Вт
- R7 = 0,47 Ом 5W
- R 8, R 11 = 27 кОм 1 / 4W
- R9, R19 = 2,2 кОм 1 / 4W
- R10 = 270 кОм 1 / 4W
- R 12, R 18 = 56KOhm 1 / 4W
- R14 = 1,5 кОм 1 / 4W
- R15 , R16 = 1 кОм 1/4 Вт
- R17 = 33 Ом 1/4 Вт
- R22 = 3,9 кОм 1/4 Вт
- RV1 = переменный 100 кОм
- P1, P2 = 10 кОм линейные
- C1 = 3300 мкФ / 50 В
- C2, C3 = 47 мкФ / 50 В
- C4 = 100 нФ
- C5 = 200 нФ
- C6 = керамика 100 пФ
- C7 = 10 мкФ / 50 В
- C8 = 330 пФ керамика
- C9 = 100 пФ керамика
- D1, D2, D3, D4 = 1N5402,3,4 диод 2 A — RAX GI837U
- D5, D6 = 1N4148
- D7, D8 = 5,6 В стабилитрон
- D9, D10 = 1N4148
- D11 = 1N4001 диод 1 A
- Q1 = BC548 или BC547
- Q2 = 2N2219
- Q3 = BC557 или BC327
- Q4 = 2N3055 силовой транзистор
- U1, U2, U3 = TL081
- D12 = светодиод
Методы измерения напряжения и тока выхода в таком источнике питания зависят от ваших возможностей и пожеланий. Когда дело доходит до напряжения, следует использовать любой вольтметр и подключать его к выходным клеммам устройства. Измерение тока в данном случае проводилось с помощью светодиодной линейки и микросхемы LM3915.
Чтобы иметь возможность измерять ток таким способом, напряжение возникающее на резисторе R7 должно быть первоначально усилено, поскольку LM3915 требует более высоких напряжений для измерения (на резисторе R7 при 3 A ток будет около 1,5 В). Усилить это напряжение надо с помощью операционного усилителя (по схеме неинвертирующего усилителя), и из-за того, что источник питания также имеет отрицательные напряжения, придется делать дополнительный канал питания.
Лучше питать дополнительный операционный усилитель так же, как U3. Усиливая напряжение с резистора R7, можно соблазниться регулируемым усилением (простая замена 2 или 3 резисторов с помощью переключателя), благодаря которому получим различные диапазоны измерения тока — полезные при низких токах. Также при настройке LM3915 может быть линейка или точка — по желанию.
Понижающий модуль из Китая. Выходное напряжение составляет 24 вольта, то 4 ампера. Модуль компактный, что в моем случае в самый раз.
Регулировочный модуль из Китая. Вроде как за 300 Ватт. Но у меня ограничено 4 Амперами понижающего модуля, то есть до 100 Ватт.
Корпус от старого модема или роутера. Корпус крепкий и плоский, но мои комплектующие влезут.
Индикатор выходных напряжения и тока тоже китайский. Вольты отображаются красным. Амперы синим.
Тумблер от старой техники. Модель Т3. Вроде на 2.5 Ампера.
Вместо установленных подстроечных резисторов, я поставлю регулировочные резисторы. Нашел в закромах две ручки, жаль что не было синей, было бы под цвет индикатора тока.
Выходные клеммы от старого прибора. Соответственно разного цвета.
На этом занятии Школы начинающего радиолюбителя мы начнем создавать лабораторию радиолюбителя. Для более-менее качественного исполнения задуманной конструкции радиолюбителю необходим минимальный набор приборов для настройки и проверки работоспособности собираемой им схемы. Кроме мультиметра (тестера) необходимо иметь: лабораторный блок питания (для проверки работоспособности и настройки схемы, и чтобы для каждой схемы, прежде чем наладить ее, не собирать отдельный источник питания); генератор импульсов (прямоугольных, пилообразных, синусоидальных – для настройки схемы); частотомер (для измерения частотных характеристик собираемой схемы или ее настройки). Это основные приборы.
Начнем мы с лабораторного блока питания. Очень часто в публикуемых электрических схемах требуется двухполярный источник питания (к примеру: +9 вольт, общий провод, -9 вольт), поэтому мы будем сразу создавать двухполярный лабораторный блок питания. За основу возьмем схему простого в исполнении двухполярного источника питания опубликованного на сайте в разделе “Источники питания“:
На всякий случай еще раз привожу схему блока питания:
Схема проста в изготовлении, не требует дефицитных деталей и позволяет получать на выходе ± 1,5…37 вольт при выходном токе до 1,5 ампер. Основа конструкции – микросхемные стабилизаторы напряжения типа КРЕН – КР142ЕН12А (регулируемый стабилизатор положительного напряжения) и КР142ЕН18А (регулируемый стабилизатор отрицательного напряжения). Рассмотри схему более подробнее, чем она описана в статье.
Для того, чтобы схема выдавала заявленные максимальные 37 вольт на вход стабилизаторов надо подавать напряжение на 2-3 вольта больше, т.е. около 40 вольт. Поэтому силовой понижающий трансформатор должен выдавать на своих двух вторичных обмотках около 40 вольт. Но надо учитывать, что при использовании в схеме выпрямителя по мостовой схеме (как у нас) выпрямленное (постоянное) напряжение на сглаживающем конденсаторе (С1 и С5) примерно получается в 1,4 раза больше чем переменное напряжение на обмотках трансформатора, и это надо учитывать при выборе трансформатора. Вообще, при выборе деталей надо исходить из двух основных принципов: 1) деталь должна быть как можно дешевле и 2) лучше использовать то что “бог послал”. В данном случае нам нужен трансформатор обеспечивающий на двух вторичных обмотках примерно 25…30 вольт и номинальную силу тока 1,5 ампера, то есть мощность его должна быть около 40 ватт. Новый трансформатор, выдающий такие характеристики довольно-таки дорог, поэтому надо исходить из того, что имеется в данный момент у радиолюбителя. Мне, например, “бог послал” трансформатор ТП-115 К12, кторый выдает переменное напряжение ±18 вольт при максимальном токе нагрузке 0,7 ампер. Вы можете использовать любой другой подходящий трансформатор, даже с одной вторичной обмоткой (получится блок питания с регулируемым положительным напряжением) а в дальнейшем уже заменить его на более подходящий. И еще немного о деталях. Радиолюбитель должен стремиться к тому, чтобы себестоимость его конструкции была как можно меньше, а для этого надо не только покупать новые детали, но и смело использовать детали бывшие в употреблении. Поэтому, мой вам совет, проходя мимо “помойки” и заметив что там валяется какая-либо плата с деталями, выброшенный старый телевизор или что-то другое, не стесняйтесь, подойдите, посмотрите и если эта штука в нормальном состоянии заберите ее домой на детали. Посещайте “блошиные рынки”, радиомастерские, на всем этом вы сможете сэкономить круглую сумму. Если только покупать детали в магазинах, то можно разориться. Цены в магазинах сейчас дикие, очень кусачие и часто вызывающие недоумение. К примеру, к блоку питания нам потребуются измерительные головки (аналоговые или цифровые) визуально отображающие напряжения (и токи на выходе), так вот, в моем “любимом магазине” стрелочный индикатор с пределом измерения 30 вольт стоит 520 рублей а цифровой (с выводом результата на дисплей) около 600 рублей, при том, что на рынке можно купить цифровой мультиметр приличного качества за 300 рублей! Но, продолжим.
С выхода вторичных обмоток трансформатора переменное напряжение подается на выпрямители собранные по мостовой схеме. В схеме можно использовать выпрямительные диоды или диодные сборки какие есть под рукой. Единственное они должны соответствовать требованиям: рабочее напряжение не ниже 50 вольт и ток нагрузки не менее 1,5 ампера (лучше больше, с запасом). С выпрямителей пульсирующее постоянное напряжение подается на сглаживающие конденсаторы С1 и С5. Задача этих конденсаторов как можно больше снизить пульсацию постоянного напряжения. Если у вас нет конденсаторов таких номиналов, можно использовать другие, большего номинала или меньшего (соединив несколько конденсаторов параллельно). Конденсаторы С2 и С6 нужны, если длина проводников от сглаживающих конденсаторов до стабилизаторов более 15 сантиметров, если менее, то их можно не ставить. Резистор R1 и светодиод HL1 нужны для световой сигнализации включенного блока питания. Далее постоянное напряжение поступает на микросхемные стабилизаторы напряжения. Вы наверное заметили, что у них несколько странное обозначение выводов, связано это с тем, что первоначальном варианте планировалось выпускать их в многовыводном корпусе, но потом от этой затеи отказались а нумерацию оставили старой. С помощью делителя напряжения на резисторах R2, R3 и R4, R5, где R2 и R4 переменные регулируется напряжение на выходе стабилизаторов. Для нормальной работы стабилизаторов и обеспечения их температурного режима, рекомендуется установить их на радиаторы. Радиаторы также можно применить из тех что имеются в наличии, и даже сделать самодельные из алюминиевых уголков. Но при этом надо учитывать, что чем меньше радиатор тем меньше должен быть ток нагрузки. Оптимально радиаторы должны иметь площадь не менее 100 см?.
Ниже приведена фотография используемых радиоэлементов, согласно схеме (у вас может отличаться):
Вот такой, в принципе, у вас должен получиться набор радиодеталей для сборки двухполярного лабораторного источника питания. Как видно на фотографии на резисторах нанесена цветовая маркировка и чтобы проверить их номинал можно использовать программу, представленную в статье “Резисторы“, или воспользоваться мультиметром:
Как видим мультиметр показывает сопротивление проверяемого резистора около 240 Ом.
Если на “мелких” конденсаторах трудно различить маркировку или она совсем затерлась, емкость также можно проверить мультиметором:
Как видим емкость проверяемого конденсатора – 0,1 мкФ.
А вот так выглядят микросхемные стабилизаторы:
Извиняюсь за качество фотографии, в дальнейшем это дело будет поправлено. Маркировка выводов (для ЕН12 и ЕН18 она отличается) слева на право: для ЕН12 – 1 (регулирование), 2 (выход), 3 (вход); для ЕН18 – 1 (регулирование), 2 (вход), 3 (выход).
А вот так маркируются электролитические конденсаторы:
Напоминаю, что у импортных маркируется минусовой вывод (как на фотографии), а у родных маркируется положительный вывод знаком “+”.
Теперь делаем перерыв на несколько дней, в течении которых вы должны собрать необходимые радиодетали, материал для изготовления печатных плат. (Для рисования дорожек в мы будем использовать цапонлак (и обычный шприц), или другой имеющийся у вас в наличии и быстросохнущий).
Когда был изготовлен блок 1,3-30 В, именного тогда пришла идея немного модернизировать схему и расширить рабочее напряжение от 0 В. По сути, схема лабораторного блока питания дополнилась лишь небольшим количеством элементов.
Как видим, ничего нового, та же LM317 усиленная парой мощных транзисторов TIP36C, ограничение и стабилизация тока также организованно на LM301. Но присутствует стабилизатор 7905 и дополнительный делитель состоящий из R9 и Р4, который позволяет формировать отрицательные 1,2 В. В общем, читаем инструкцию по сборке и настройке блока.
Лабораторный блок питания — пошаговая сборка
Первым делом необходимо выбрать подходящий мощный трансформатор. Для нашего блока им станет ТПП-319. Перед сборкой необходимо как следует его нагрузить и проверить, как он держит нагрузку, и какой максимальный ток он способен выдать.
После подготовки и подключения трансформатора, а также диодного моста BR1, необходимо установить на его выход конденсатор С1 и приступать к плате.
Плату блока питания для самостоятельного изготовления можно скачать в конце статьи в формате lay.
Шаг. 1 Установка элементов, отвечающих за регулировку напряжения
Устанавливаем предохранитель F1. Резистор R1 временно заменяем перемычкой. Далее устанавливаем стабилизатор с регулируемым выходным напряжением LM317. Также на свои места устанавливаем R4 и R6 и подключаем переменный резистор Р3. На плате вместо Р4 устанавливаем временную перемычку на минус блока.
Сейчас мы подключаем основу блока – детали, отвечающие за регулировку напряжения. Выходное напряжение на стабилизаторе LM317 зависит от делителя напряжения, собранного на R6 и Р3.
На выходе мы получим регулируемое стабилизированное напряжение от 1,2 В. Максимальный ток, который сейчас может пропустить через себя LM317 это 1,5 А. Сейчас можно закрепить небольшой радиатор на LM317 и нагрузить выход БП нагрузкой. Важно на данном этапе не перегружать БП, выходной ток не должен превышать 0,5 А т.к. LM317 будет очень сильно нагреваться.
Шаг. 2 Установка конденсаторов фильтра
Устанавливаем конденсаторы С3; С4; С8 — С12. После установки С9 регулировка напряжение станет более плавной. По выходным характеристиками на данном этапе блок остается без изменений.
Шаг. 3 Подключение силовых транзисторов
Снимаем перемычку, установленную вместо резистора R1. Устанавливаем R1 на свое место. Подключаем транзисторы Т1-Т2 и балансировочные резисторы R7 — R8. Устанавливаем R5. R5 – выполняет роль шунта. В дальнейшем LM301 будет отслеживать падение напряжения на нем.+
При небольшой нагрузке ток будет идти через LM317, а при увеличении нагрузки из-за падения напряжения на R1 (на 0,6-0,8 В) откроются транзисторы. Транзисторы необходимо установить на хороший радиатор с принудительным охлаждением. На выходе будет регулировка напряжения от 1,2-30 В, но без ограничения тока. Важно!Пока не закончена сборка блока, не устраивать короткое замыкание на выходе БП.+
Шаг. 4 Балансировка транзисторов
Работу пары транзисторов необходимо сбалансировать, для этого нагружаем блок. Выходной ток лучше не превышать 3 А. Измеряем ток, проходящий через транзистор Т1, затем через транзистор Т2. Амперметр поочередно подключаем в коллекторную цепь каждого из транзисторов. Если ток примерно одинаковый, переходим к шагу №5. Если перекос тока значительный, необходимо с помощью R7 и R8 добиться максимально близких значений. В качестве нагрузки лучше использовать нихромовую проволоку или спираль от ТЭНа.+
Как показывает практика, если пара транзисторов из одной партии и новая, то скорей всего ток, проходящий через каждый транзистор, будет одинаковым.+
Шаг. 5 Подключение питания для ОУ и периферии
В следующем шаге мы поработаем над питанием LM301 и периферийных устройств. Для питания вентилятора и цифрового вольтамперметра используется стабилизатор 7812. Питание для него берется с основного моста BR1, а на выходе мы уже получим стабилизированное напряжение 12 В. Также на выходе 7812 устанавливается конденсатор С13. Стабилизатор 7812 желательно установить на небольшой радиатор.+
Для формирования отрицательного питания LM301 используется отдельная обмотка трансформатора, которая подключается к диодному мосту BR2 и конденсатору С2(положительный вывод конденсатора подключается на минус блока). Далее напряжение поступает на стабилизатор отрицательной полярности 7905. Важно учесть, что напряжение на входе стабилизатора должно быть порядка 7-9 В. На выходе 7905устанавливается конденсатор С14.
После установки необходимо произвести замеры напряжения относительно минуса БП. Черный щуп мультиметра подключается на минус блока, а красный на выход стабилизатора 7905. Показания должны быть – 5 В (минус 5 вольт). На выходе 7812должно быть 12 В.+
Шаг. 6 Установка операционного усилителя и элементов стабилизации тока
Устанавливаем LM301, переменный и подстроечный резистор Р1 и Р2, конденсатор С5;С6;С7, резисторы R2; R3, а также диоды D1; D2 и светодиод LED1. Не забываем поставить перемычку на плате идущую от Р2 .
Пара слов о работе операционного усилителя в этом лабораторном блоке питания. LM301 в данном блоке работает в режиме компаратора. R5 – выполняет роль шунта, LM301 отслеживает на нем падение напряжения.+
С помощью делителя, состоящего из резисторов Р1; Р2 и R3, устанавливается на инвертирующем входе опорное напряжение. Если напряжение на инвертирующем входе больше, чем на неинвертирующем на разницу, не превышающую опорное напряжение, на выходе LM301 будет напряжение равное напряжению питания LM301 (такое же, как и на выходе БП). Светодиод не загорится, так как включен обратной полярностью. Как только напряжение на инвертирующем входе превысит напряжение на неинвертирующем, на разницу значения опорного напряжения, то на свой выход ОУ подаст -5V и светодиод загорится. Напряжение отрицательной полярности проходит через LED1 и D1 попадает на управляющий вывод LM317. Вывод частотной коррекции LM301, включенный через диод D2 на выход блока питания, гасит напряжение на выходе ОУ до безопасного для светодиода LED1 уровня.+
Таким образом, вращая потенциометр Р1, можно изменять опорное напряжение на инвертирующем входе и соответственно ограничивать ток, проходящий через R5.
На данном этапе о правильной работе LM301 можно судить, когда Р2 или Р1 будет установлен в крайнем минимальном положении, при этом загорится светодиод, а напряжение на выходе блока сбросится на ноль. На этом этапе лабораторный блок питания готов на 90%.+
Шаг. 7 Установка нуля
Для регулировки напряжения LM317 он нуля вольт на таком лабораторном блоке питания, будем заимствовать идею, описанную производителем LM117. Тут для регулировки от нуля вольт используется опорное стабилизированное напряжение – 1,2 В (минус 1,2 В).+
Как видим, в первоисточнике используется источник опорного напряжения LM113. Его можно заменить современным аналогом LMV431, который лучше согласован с LM317 и имеет опорное напряжение – 1,24 В (минус 1,24 В). Но, при использовании такого подхода возникнет проблема с покупкой LMV431, зачастую магазины везут ее только под заказ и не в самые короткие сроки.+
С учетом того, что отрицательное питание LM301 в нашем блоке и так стабилизированное с помощью 7905, то нам достаточно установить делитель напряжения состоящий из R9 и Р4. А с помощью Р4 уже можно добиться значения — 1,25 В (минус 1,25 В) на делителе.+
Снимаем временную перемычку, установленную вместо Р4. Устанавливаем R9 и Р4 на свои места. Переводим Р1 и Р2 в средние положения. Р4 устанавливаем в крайнее положение так, что бы его сопротивление было минимальным и включаем блок. С помощью Р3 мы устанавливаем минимальное выходное напряжение блока, оно будет 1,2 В. Далее, увеличивая сопротивление Р4, добиваемся значение 0 В на выходе блока. Теперь доступный диапазон регулировки напряжения составляет 0-30 В.+
Шаг. 8 Установка защитных диодов
Устанавливаем диоды D3 и D4. D3 будет защищать вход блока от всплесков напряжений обратной полярности, т.к. эксплуатация лабораторного блока будет происходить в различных условиях. D4 защищает выход LM317 от ситуаций, когда напряжение на выходе LM317 превышает напряжение на ее входе.
Шаг. 9 Настройка ограничения максимального тока
- Выставляем на блоке 12В.
- Р2 устанавливаем на максимум (т.е. регулировка тока включена максимальная) — на выходе 12 В.
- Р1 — на минимум (подстройка максимального тока) т.е. выходной ток будет ноль и напряжение упадет до 0 — горит светодиод.
- Берем нихромовую спираль сопротивлением 2 Ом. и подключаем ее к выходу.
- С помощью Р1 начинаем регулировать ток. Когда на выходе 5 А, можно остановиться. В это время вольтметр будет показывать 10 В.
Теперь с помощью Р2 будет доступный диапазон тока 0 — 5 А. Это самый простой метод, который можно рекомендовать для настройки максимального тока такого лабораторного блока питания.+
Шаг. 10 Подключение вольтамперметра
При подключении вольтамперметра питание прибора стоит брать со стабилизатора 7812. Отрицательный выход блока на выходную приборную клемму подключается уже через вольтамперметр.+
Для точной (тонкой) регулировки тока и напряжения можно ввести дополнительные переменные резисторы номиналом около 5% от основного регулятора. Например, с Р3можно подключить последовательно переменный резистор на 220 Ом, а с Р2 можно подключить последовательно переменный резистор на 20 кОм и повторно произвести настройку ограничения тока.+
Вот таким получился лабораторный блок питания своими руками. Приносим огромную благодарность Владимиру Сметанину, который не побоялся собрать прототип платы и героически преодолел все трудности сборки блока, чтобы предоставить действительно интересные материалы!+
Благодаря Владимиру, лабораторный блок питания имеет индивидуальную лицевую панель, созданную с помощью ЧПУ фрезеровки.+
Ну и демонстрация работы лабораторного блока питания:+
Лабораторный блок питания своими руками 1,3-30В 0-5А
Немножко подумав, мы сделали свою интерпретацию данного блока питания. Повысили емкость входных конденсаторов, убрали элементы измерительной головки и добавили парочку защитных диодов. Применения в этой схеме КТ818 было абсолютно неоправданно, он безбожно грелся и безвозвратно издох, пока его не заменили парой недорогих транзисторов TIP36C, которые включили параллельно.
Настройку блока питания необходимо проводить в несколько этапов:
Первое включение производится без LM301 и транзисторов. Регулятором Р3 проверяем, как регулируется напряжение. За регулировку напряжения отвечают LM317, Р3, R4 и R6, С9.
Если регулировка напряжения производиться нормально, тогда к схеме подключаем транзисторы. Пару транзисторов покупать лучше с одной партии, с максимально близким hFE. Для нормальной работы параллельно включенных транзисторов, в цепи эмиттера должны находиться балансировочные резисторы R7 и R8. Номинал R7 и R8 необходимо подбирать, сопротивление должно быть максимально низким, но достаточным, что бы ток проходящий через Т1 был равен току проходящим через Т2. На данном этапе к выходу БП можно подключать нагрузку, но ни в коем случае не стоит устраивать КЗ – транзисторы моментально выйдут из строя, забрав с собой и LM317.
Следующим этапом станет установка LM301. Важно убедиться, что на 4-й ножке операционного усилителя присутствует -6 В. Если там +6 В, то необходимо внимательно осмотреть, как у Вас включен диодный мост BR2 и правильно ли подключен конденсатор С2. Питание LM301 (7я ножка) МОЖНО брать с выхода БП.
Вся дальнейшая настройка сводиться к подгону Р1 под максимальный рабочий ток блока питания. Как видим, настроить лабораторный блок питания своими руками будет совсем не трудно, главное не допустить ошибки при монтаже.
Используемые нами основные компоненты:
- Трансформатор ТПП 306-127/220-50. Позволяет выжать с каждой 20 вольтовой обмотки по 2,56 А, включив их параллельно получим 5,12 А. Остальные обмотки идут на питание операционного усилителя, вентилятора и цифрового вольтамперметра;
- Стабилизатор — LM317К;
- Транзисторы — TIP36C;
- Операционный усилитель — LM301AN;
- Конденсаторы электролитические – номинал см. схему, максимальным напряжением до 50В;
- Диоды BR2 – 1N1007;
- Диоды BR1 — MBR20100CT;
- Резисторы R1 – 33 Ом, 2Вт;
- Резисторы R5, R7, R8 – 0,1 Ом, 5Вт;
- Остальные резисторы мощностью — 0,25Вт;
- Резисторы Р1 – многооборотный подстроечный 470 кОм;
- Предохранитель F2 – самовосстанавливающейся предохранитель от Littelfuse на 7А/30В.
Как сделать лабораторный источник питания своими руками
Подборка рекомендаций и ссылок по сборке лабораторного источника питания (ЛБП) своими собственными руками из доступных комплектующих. Вариантов сделать для себя точный блок питания с регулировкой множество — начиная от простых и бюджетных, заканчивая серьезными устройствами с мощной стабилизацией, связью с компьютером и удаленным программированием.
Программируемые и управляемые модули для ЛБП
Простой способ собрать для себя лабораторный источник питания — это взять управляемый модуль-преобразователь со стабилизацией питания. Одни из самых мощных на Алиэкспресс — это модули RD DPS5015 и DPS5020, с выходными токами 15 и 20 Ампер соответственно. Для удаленного управления выбирайте версии «С» — communication для работы через USB/Bluetooth/Wi-Fi. Модули RD DPH5005 имеют встроенный Buck Boost конвертер для повышения напряжения (можно питать 12/24 вольта и получить на выходе, 30-40-50В. Один из самых продвинутых программируемых преобразователей питания — это модель RD 6006 (подробный обзор). Предыдущий список модулей с интересными вариантами.
Компактные преобразователи питания
Не всегда нужны громоздкие источники и приборы, но достаточно бывает компактного преобразователя для подключения и быстрого теста самоделок. На выбор могу предложить несколько вариантов. Например, простой карманный источник питания, который работает от USB зарядки или павербанка — DP3A, с поддержкой быстрой зарядки QC3.0 и возможностью выставить нужный ток или напряжение со стабилизацией до 15W. Подробный обзор DP3A по ссылке. Чуть мощнее и в отдельном корпусе под блочный монтаж — преобразователь 32В/4А с встроенными защитами (OVP/OСР/ОРР) и стабилизацией тока и напряжения CC/CV, а также возможностью поднять выходное напряжение (Buck Boost). Еще один полезный для домашних самоделок источник — простой блок питания наподобие ноутбучного, но со встроенным показометром и регулировкой. Заявлена стабилизация напряжения мощность до 72W (максимум 3А на выходе).
Стационарные источники питания все-в-одном
Для стационарной работы я бы рекомендовал иметь дома хотя бы один мощный источник типа KORAD. Цифры в названии подобных ЛБП обычно показывают максимальные режимы питания: 30/60 Вольт и 5/10 Ампер. То есть KORAD KA3005 — это 30В/5А, модели 6005 стабилизирует большее выходное напряжение, а типа 3010 — больший ток (до 10 А). Плюс подобных источников — встроенный сетевой преобразователь на 220В.
Модули сетевого питания для сборки ЛБП
Для питания управляемых модулей нужен сетевой преобразователь. Я бы не рекомендовал брать дешевые «народные» платы питания, а предложил бы посмотреть в сторону корпусных БП. В таких уже продумано охлаждение и монтаж, присутствует некоторая регулировка выхода. На выбор предлагаются источники с выходным напряжением на 5V, 12V, 24V, 36V, 48V, 60V и мощностью до 400 Вт. Конечно, можно использовать и компьютерные источники питания АТХ (с выходом 12В и преобразователем типа DPH5005, или с переделкой для повышения выходного напряжения), и другие от старой аппаратуры.
Таким образом, можно на базе готовых модулей и источников тока создать свой удобный и точный блок лабораторного питания. За основу можно взять как старую технику, так и полностью готовые комплектующие с Алиэкспресс и радиомагазинов. Цены варьируются от $5 за простой преобразователь с экраном и стабилизацией, и до $100 за мощное устройство. Из полезных функций — наличие Buck Boost конвертера, который помогает повышать напряжение при недостатке входного, функция заряда аккумуляторов (с наличием встроенной защиты и счетчиков емкости), функция стабилизации тока, функции удаленного управления.