2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Лейденская банка

Лейденская банка. Виды и устройство. Работа и применение

Лейденская банка – это первый в своем роде электрический конденсатор, который появился на свет благодаря стараниям немецких и голландских ученых. В 1745 году подобную банку смастерил Эвальд Георг фон Клейст. Через год подобное устройство, но с некоторыми отличиями, создали в Лейденском университете. Этим устройством заинтересовался аббат Нолле из Франции, который продемонстрировал его королю. Именно благодаря демонстрации первая конструкция электрического конденсатора получила название банка из Лейдена.

До изобретения этой банки ученые вырабатывали электричество с помощью диэлектриков в виде стекла или янтаря, а также электростатических генераторов. Клейст решил провести эксперимент, зарядив электрическим зарядом воду в банке посредством штыря из железа. В то же время банка находилась на металлической тарелке. Проведя опыты, он понял, что в банке конденсируется электрический ток.

Виды
Лейденская банка почти всегда имела одно и то же строение. Однако конструкция банки с течением времени усовершенствовалась:
  • Изначально вода в ней была заменена на дробь.
  • Затем в качестве наружной поверхности стали использоваться тонкие пластины из свинца.
  • В последующем вместо пластин из свинца стали применяться листы из оловянной фольги.

Одним из вариантов устройства была батарейка лейденских бутылок, которые имели проводящую жидкость. В них были вставлены стержневые выводы, которые соединялись между собой. Сосуды соединяются с помощью общего вывода, вследствие чего получался большой конденсатор. Это устройство было изобретено Павлом Николаевичем Яблочковым. Указанные блоки можно было соединять последовательно либо параллельно. Конструкция в виде блоков в итоге получила довольно обширное применение в различных отраслях промышленности.

Устройство

Это сосуд из стекла, внутри и снаружи покрытый фольгированным листом. Посредством пробки из резины в сосуд вставляется стержень из металла таким образом, что он касается фольги, расположенной внутри банки. В результате листы фольги, расположенные внутри и снаружи, играют роль электродов при подсоединении их к наружному источнику электроэнергии. Для этого может быть использована батарейка, какой-нибудь аккумулятор, либо палка из эбонита, которую заранее потерли о мех.

Лейденская банка напоминала закрутку. Сверху накручивалась крышка из металла, которая входила в электрод. Через некоторое время банки объединялись с батареями, после чего их помещали в один ящик.

Эти устройства применялись порядка 150 лет. Так как везде был распространен постоянный ток, то не было необходимости изобретать что-то еще. Поэтому в основном довольствовались банками, чтобы обеспечить работу применявшихся в то время телеграфов.

Принцип действия

Лейденская банка имеет принцип действия, свойственный обычному электрическому конденсатору. Основное достоинство банки перед конденсаторами пластинчатого вида кроется в довольно большой поверхности, а также в наличии замкнутого контура при разных и одинаковых параметрах. В качестве источника заряда для банки может применяться батарея, аккумулятор либо другое устройство. Электрический заряд способна выдавать и палочка из эбонита, которая заранее была потерта о шерстяной материал. Она имеет свободные электроны.

При соприкосновении стержня из металла с крышкой сосуда электроны перемещаются от палочки на поверхность внутреннего электрода. В результате отрицательные заряды накапливаются на внутреннем электроде, так как банка имеет ограниченную способность к накоплению зарядов. В виду взаимного отталкивания не весь электрический заряд может перейти на электрод. Возможность накапливания или удерживания заряда как раз и зовется емкостью.

Емкость увеличивается благодаря присутствию второго электрода, который расположен на внешних стенках банки. При заземлении этого электрода, заряд который накапливается внутри, может притягивать с поверхности земли плюсовой заряд, равный такой же величине. Плюсовой заряд на электроде внутри банки притягивает отрицательные электроны, что приводит к частичному сдерживанию сил отталкивания. В результате можно несколько увеличить емкость банки.

Читать еще:  Деревянный молоток своими руками
Емкость может быть увеличена двумя способами:
  1. Повышение площади электродов, что позволит рассредоточить заряды, а также снизить взаимно отталкивающие силы.
  2. Можно также снизить толщину стенки банки. Однако необходимо понимать, что если оставить излишне тонкое стекло, то заряды будут рассеиваться.

Другим способом является подбор изоляционных материалов.

Применение

Лейденская банка считается одним из самых важных изобретений, что дало толчок к дальнейшему изучению электричества. Благодаря этому стали изучаться электропроводящие свойства многих материалов. Именно при помощи этой банки была получена электрическая искра искусственным путем. Сегодня банка в большинстве случаев используется лишь для демонстраций в виде элемента электрофорной машины. Ее заменили устройства в виде современных конденсаторов, которые отличаются большей емкостью и удобством использования.

Тем не менее, использование данного вида конденсатора позволяет наглядно продемонстрировать, как работает это устройство. Но банка имеет определенные ограничения по хранению электронов. Вызвано это не идеальностью применяемых изоляционных материалов. В то же время электроэнергия в такой банке может храниться достаточно долгое время, если отключить ее от цепи.

Благодаря изобретению банки удалось установить влияние элктроразрядов на человека. В результате появилась электромедицина. Именно в этой области стали широко применяться банки для проведения экспериментов и лечения человека. Банки использовались для телеграфов, ведь они давали необходимый сигнал. Устройство заряжалось вручную. Выяснилось, что устройства большего объема могли обеспечивать более сильный разряд.

При этом имелась и определенная зависимость от толщины стекла. При применении банок с тонкими стеклами можно было получать разряд на порядок сильнее, чем с толстыми стеклами. Именно благодаря изучению силы электрического удара появились плоские конденсаторы.

Лейденская банка своими руками

Сегодня подобную банку можно смастерить самостоятельно и в довольно короткие сроки. Для этого потребуется банка из пластмассы, пластина из жести, которой припаивается изолированный провод, фильтровальная бумага, уголь активированный, соленая вода, а также крышка с выводом-контактом. Пластина помещается на дно банки, конец провода выводится наверх. Закрывается бумагой и слоем угля. Наливается вода, а банка закрывается крышкой с выводом. В результате банка будет иметь два изолированных провода. При подведении напряжения появится эффект конденсации.

Лейденская банка или простейший конденсатор своими руками

С. И. Шапошников

Электроемкость

Известно, что существуют некоторые приборы, в которых можно накапливать или собирать электричество.

Такие приборы называются конденсаторами.

Возьмем несколько различных конденсаторов и присоединим их параллельно, например, к батарее в 80 вольт напряжением. Обкладки конденсаторов сейчас же получат заряды от полюсов батареи и зарядятся до того же напряжения, что и у батареи.

Отсоединяя теперь поочередно конденсаторы, не касаясь их контактов руками, будем касаться ими до зажимов чувствительного прибора. При этом мы заметим следующее: в момент присоединения конденсатора к прибору проскочит искорка, сопровождаемая более или менее громким треском, и прибор даст мгновенное отклонение стрелки 1 ). Так как эти отклонения будут различны, мы заключаем, что заряды разных конденсаторов, полученные от одной и той же батареи, будут различны, т.-е. одни конденсаторы получат большее количество электричества, другие — меньшее.

Электроемкостью, или, как говорят чаще, емкостью конденсатора, называется способность его воспринимать большее или меньшее количество электричества.

Для измерения емкостей установлена единица, т.-е. определенная емкость, называемая фарадой.

Емкостью в 1 фараду обладает такой конденсатор, который, будучи заряжен до напряжения в один вольт, при разряде даст ток, средняя величина которого будет равна одному амперу, при длительности прохождения тока в одну секунду.

Читать еще:  Две идеи как сделать топиарий своими руками

Фарада — емкость весьма большая, почему ее разделили на миллион частей, называя такую единицу микрофарадой.

Но для целей радиотехники часто и микрофарада является слишком большой. Поэтому чаще пользуются третьей единицей, называемой сантиметром.

Микрофарада равна девятистам тысячам сантиметров.

Деля число сантиметров на 900.000, мы превратим емкость, выраженную в сантиметрах, в микрофарады. А разделив число микрофарад на 1.000.000, мы выразим ту же емкость в фарадах.

Расчет емкости

Простейший конденсатор состоит из двух пластин любого металла, разделенных одна от другой слоем любого непроводника или изолятора, или жке, как иначе его называют, диэлектрика.

Рис. 1. Параллельное соединение конденсаторов.

Пусть мы имеем два совершенно одинаковых конденсатора с одинаковой емкостью — С1 и С2. Соединим их параллельно к батарее Б (рис. 1). Очевидно, что емкость такой соединенной группы будет вдвое больше, чем емкость одного конденсатора, так как два конденсатора, при заряде, получат две порции электричества.

Что у нас изменилось, когда мы присоединили второй конденсатор? Диэлектрик остался прежний, толщина его тоже.

Изменилась величина пластин, или, как их называют, обкладок — вдвое. Во столько же раз изменилась и емкость системы. Поэтому, если взять такой же диэлектрик, как у двух первых конденсаторов, но обкладки его увеличить по площади вдвое, то мы получим один конденсатор, но с емкостью вдвое большей.

Итак: емкость конденсатора зависит от величины обкладок. Чем площадь обкладок меньше, тем меньше емкость конденсатора. Чем площадь обкладок больше, тем больше емкость конденсатора.

Рис. 2. Последовательное соединение конденсаторов.

Теперь соединим два одинаковых конденсатора последовательно, как показано на рис. 2-a. Измерение показывает, что емкость такой группы стала вдвое меньше, чем у каждого конденсатора в отдельности. Что же у нас изменилось?

Будем сближать оба конденсатора их внутренними обкладками. Оказывается, что от этого емкость группы изменяться не будет. Она будет оставаться все время вдвое меньшей, чем емкость одного конденсатора. То же будет и тогда, когда внутренние обкладки конденсаторов соединятся между собой, как это изображено на рис. 2-б. И, наконец, то же самое будет, если мы выдернем внутренние обкладки, как это показано на рис. 2-в. Теперь нам ясно. что у нас изменилось: толщина диэлектрика. Она увеличилась вдвое, поэтому емкость уменьшилась вдвое.

Итак: емкость конденсатора уменьшается с увеличением толщины диэлектрика и, наоборот, увеличивается с уменьшением толщины диэлектрика, при условии, что площадь обкладок остается прежней.

Теперь возьмем конденсатор, у которого диэлектрик — воздух. Такой воздушный конденсатор имеет некоторую емкость. Вставим в промежуток между обкладками его диэлектрик из парафиновой бумаги такой же толщины, какой был слой воздуха. Измерение доказывает, что емкость парафинового конденсатора увеличилась в 2,2 раза. Если парафин заменить стеклом такой же толщины, емкость увеличится в 5—6 раз против емкости воздушного конденсатора.

Следовательно, емкость конденсатора зависит от химических свойств диэлектрика.

Величину, показывающую, во сколько раз увеличилась емкость воздушного конденсатора при замене воздуха каким-либо диэлектриком называют диэлектрической постоянной этого диэлектрика.

Диэлектрическую постоянную будем обозначать буквой К.

Таблица №1

Величины диэлектрической постоянной K

ДиэлектрикК
Воздух1
Керосин.2
Шеллак.2
Каучук2—2,7
Сера2—4
Парафин2,2
Парафиновое масло
Эбонит2—3
Гуттаперча2,4
Льняное масло3,4
Слюда4—8
Миканит
Стекло
Фарфор4,5—5
Двойные цифры, напр. 4—8 для стекла, в каких пределах может изменяться диэлектрическая постоянная его, в зависимости от сорта.

Все вышеприведенные рассуждения можно свести в формулу, по которой легко производить расчет емкости разных конденсаторов.

C =K · Sкв. см.=K · Sсм. . (1)
4π · dсм.12,56 d
Читать еще:  Дротики с выстрелом с помощью шприца своими руками

В этой формуле буквой С обозначается, как принято, емкость; К — диэлектрическая постоянная; S — площадь одной обкладки, выраженная в квадратных сантиметрах, и d — толщина диэлектрика, выраженная в сантиметрах (длины): π — число, равное 3,14.

Для лучшего усвоения приведем

примеры

Пример 1. Конденсатор стеклянный. Толщина стекла 3 мм. Обкладок две, каждая 15 см. длины и 10 см ширины.

По таблице № 1 диэлектрическая постоянная для стекла K = от 4 до 8; примем за среднее K = 6. Площадь обкладки S = 15 × 10 = 150 кв. см.; толщина стекла d = 3 мм., что переводим в сантиметры и получим: d = 0,3 см. По формуле получим:

C =6 × 150= 239 см. емкости.
12,56 × 0,3

Пример 3. Стеклянная лейденская банка (см. рис. 3). Внутренний диаметр D = 5 см., высота обкладок h = 10 см; толщина стекла d = 2 мм. Так как наружная обкладка больше внутренней, то мы и привели внутренние размеры банки, так как при неравных по площади обкладках надо измерить меньшую из них.

Попрежнему: K = 6; d = 0,2 см. Площадь дна определяется по формуле, по которой рассчитывается сечение проводников (см. стр. 17).

S =π · d 2=π · d · d=3,14 · 5 · 5= 19,6 кв. см.
444

Площадь цилиндрической части обкладки будет:

Площадь всей внутренней обкладки будет: 19,6 + 157 = 176,6 кв. см.

Cбанки =6 × 176,6= 423 см.
12,56 × 0,2

Пример 3. Конденсатор парафиновый. Число пластин 10. Размер станиолевых листочков 3 × 9 см.

Рис. 4. Как определяется площадь пластины.

Для определениия толщины листка парафиновой бумаги, разрежем один листок на части, зажмём их между двумя досочками и измерим, сколько листочков приходится на 1 мм. Предположим 13. Тогда толщина диэлектрика будет ¹/ 13 мм, что, превратив в сантиметры, получим ¹/ 130 см. K — для парафина по табл. № 1 будет = 2,2. За площадь одного листа станиоля надо принять ту часть его, которая перекрывается следующим листком (см. рис. 4). Следовательно, длина его будет, напр., 6 см. Площадь одного листка будет 3 × 6 = 18 кв. см. Если бы листков было 2, то площадь обкладки равнялась бы 18 кв. см. Если листков взять 3 (см. рис. 4), то листок второй дает с первым площадь 18 кв. см., но он же дает такую же площадь и с третьим, следовательно, при 3 листках площадь будет вдвое больше и т. д. При десяти листках площадь будет в 9 раз больше. Следовательно, S = 9 . 18 = 162 кв. см., откуда:

Для подсчета емкости конденсатора, состоящего из нескольких пластин, можно воспользоваться и такой формулой.

C =K · S1 × (n — 1). (2)
12,56 · d

где S1 — площадь одной пластины, а n — число пластин. В последнем примере S1 = 18 кв. см.; n = 10, следов., n — 1 = 10 — 1 = 9, тогда по форм. (2) имеем:

т.-е. такой же результат, как и раньше.

Разобранные три примера поясняют все случаи расчетов емкости различных типов конденсаторов.

Мы умеем рассчитать конденсатор. Это важно при постройке его, чтобы иметь представление каких размеров его строить для данной емкости.

Но мы видели, что стекло различных сортов имеет диэлектрическую постоянную от 4 до 8. То же бывает и с другими электриками. Значит, мы можем произвести ошибку из-за величины K. Но, кроме того, мы можем ошибиться и при определении толщины диэлектрика или размеров пластинок. Следовательно, нам надо проверить наш расчет, произведя измерение емкости конденсатора, к чему мы и перейдем, дав представление о том, как ведет себя конденсатор в разных электрических цепях.

1 ) Чтобы опыт был заметен, емкости д.б. достаточно большие, напр. микрофарады, а прибор — миллиамперметр. (назад)

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector