9 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Паяльная станция своими руками

Паяльная станция своими руками

Пайка электронных плат требует соблюдения определенного уровня температуры для различных деталей, ведь недостаток нагрева приведет к плохому соединению припоя, равно, как и чрезмерный нагрев вызовет преждевременное окисление олова и такое же низкое качество пайки.

Помимо этого на перегретой плате могут отслаиваться дорожки, обугливаться целые участки. Если раньше для работы с мелкими и крупными деталями, лужением относительно большой площади радиолюбители использовали набор из нескольких паяльников, сегодня эта функция решается одной паяльной установкой. Но из-за высокой стоимости такого устройства не все могут позволить себе ее приобретение, поэтому мы расскажем, как собирается паяльная станция своими руками.

Для чего нужна паяльная станция

Обычный паяльник, который включается напрямую в сеть просто греет постоянно с одинаковой мощностью. Из-за этого он очень долго разогревается и никакой возможности регулировать температуру в нем нет. Можно диммировать эту мощность, но добиться стабильной температуры и повторяемости пайки будет очень сложно.
Паяльник, подготовленный для паяльной станции имеет встроенный датчик температуры и это позволяет при разогреве подавать на него максимальную мощность, а затем удерживать температуру по датчику. Если просто пытаться регулировать мощность пропорционально разности температур, то он будет либо очень медленно разогреваться, либо температура будет циклически плавать. В итоге программа управления обязательно должна содержать алгоритм ПИД-регулирования.
В своей паяльной станции мы, конечно, использовали специальный паяльник и уделили максимум внимания стабильности температуры.

Паяльная станция Simple Solder MK936

Рекомендации по сборке самодельной паяльной станции с феном

Ключевое требование, которое можно предъявить к самодельной паяльной станции с феном можно сформулировать следующим образом – она должна обеспечить поток воздуха разогретый до температуры не менее 850 ⁰C. При этом мощность нагревательного элемента в паяльной станции не должна превышать 2,6 кВт.

Кроме этого, все компоненты этого паяльного станка с феном не должны иметь высокую стоимость и быть доступными. Кстати, бытовые фены не отвечают ни одному этому требованию. Чаще всего домашние мастера стремятся изготовить или ручной, или стационарный термофен.

Как ни странно, стационарное изделие собрать легче. Это вызвано следующими причинами – ни кто не ограничивает мастера в габаритно – весовых характеристиках. Нет необходимости в изготовлении пистолетной рукояти, которая необходима для управления прибором.

Схема электропитания паяльного фена

Термофен, в стационарном исполнении работает следующим образом – излучатель тепла стоит неподвижно на рабочем столе, а перемещать необходимо деталь. Такое решение приводит к осложнениям во время выполнения пайки. Для повышения эффективности пайки, целесообразно использовать ручной паяльник (термофен). Такой прибор должен иметь небольшие размеры, а управлять им можно незащищенными руками.

Один из главных вопросов, который встанет перед мастером, решившимся собрать паяльную станцию своими руками, звучит примерно так, какой нагревательный инструмент целесообразно использовать. Как уже отмечалось, компоненты из которых состоит бытовой фен не отвечают требованиям, которые предъявляются к устройствам этого типа. Поэтому, использовать их при создании самодельной паяльной станции недопустимо.

Практика создания самодельных станций говорит о том, что самый оптимальный вариант – это самостоятельное изготовление нагревателя из нихромовой проволоки. Ее сечение должно находится в диапазоне от 0,4 до 0,8 мм. При этом надо понимать, что использование проволоки большего сечения позволит обеспечить больший запас мощности, но получить при этом необходимую для работы температуру будет довольно сложно.

Спираль нагревателя из нихромовой проволоки

По определению нагреватель не должен быть большим. Для этого нагревательная спираль не должна превышать 4 – 8 мм, по внешнему диаметру. В качестве основания, на котором будет зафиксирован нагревательный элемент необходимо, использовать материал с высокой стойкостью к воздействию высокой температуры. Это может керамика. Кстати, вполне может подойти деталь такого плана, устанавливаемая в бытовом фене.

В качестве нагнетателя можно установить вентилятор небольшого размера. Кстати, его тоже можно снять со старого фена.

Вентилятор должен обеспечить поток воздуха в пределах 20-30 литров в минуту. Еще один вариант – воздушный компрессор для аквариумов. Для повышения его производительности необходимо дополнить его ресивером. Для него можно использовать обыкновенную пластиковую бутылку.

Изготовление корпуса для фена можно выполнить исходя из нескольких вариантов. Можно использовать материалы, которые показывают высокую стойкость к воздействию температуры, например, керамику, но такое решение приведет к удорожанию конструкцию. Можно ее удешевить, используя частичную теплоизоляцию канала, по которому продвигается горячий воздух.

Корпус термофена для пайки

Для корпуса самостоятельно изготавливаемого термофена можно использовать корпус от бытового прибора. Существуют некоторые условия – так, корпус должен быть достаточно объемным, а сопло необходимо выполнять из термостойких материалов или из металлов.

Другая забота, которая встанет перед мастером, это обеспечение работоспособности устройства. В частности, в конструкцию самодельного устройства должен входить пусковой механизм (выключатель) и элемент, отвечающий за регулировку параметров потока воздуха, а именно скорости его движения и его температуры. Для решения этих задач в электрической схеме должны быть установлены реостаты, которые позволяют выполнять плавную настройку мощности.

Сборку изделия начинают с изготовления спирали. При ее намотке необходимо учитывать, что ее сопротивление должно находиться в районе от 75 до 95 Ом. Спираль должна быть намотана на надежный изолятор, а сверху ее необходимо закрыть изолятором, например, асбест или стекловолокно. После сборки этого узла концы спирали должны выходить наружу.

Готовый элемент должен быть установлен в предварительно подготовленный канал корпуса, то есть он должен быть выложен слоем тепловой изоляции. После установки спирали на место ее можно соединять с силовой проводкой, в состав, которой входит выключатель.

ВАЖНО! При выполнении работ необходимо постоянно помнить о тепловой изоляции.

В тыльной части корпуса необходимо смонтировать воздушный нагреватель. Если габариты нагнетателя не позволяют установить его в корпус, то вполне возможно его закрепить с внешней стороны. Для подачи воздуха необходимо присоединить воздуховод.

Шаг 2: День первый – продумываем электрическую схему

У паяльника HAKKO 907 много клонов, еще существует две разновидности оригинальных жала (с керамическими нагревательными элементами A1321 и A1322).

Дешевые клоны – примеры ранних копий, с применением ХА-термопары и керамического нагревателя самого паршивого качества, или вовсе с нихромовой катушкой.

Клоны чуть подороже практически идентичны оригинальным HAKKO 907. Определить оригинальность можно по наличию или отсутствию маркировки на оплетке провода бренда HAKKO и номера модели на нагревательном элементе.

Можно также определить подлинность изделия, измерив сопротивление между электродами или проводами нагревательного элемента паяльника.

Оригинал или качественный клон:

  • Сопротивление нагревательного элемента – 3-4 Ом
  • Термистор — 50-55 Ом при комнатной температуре
  • между жалом и ESD заземлением — меньше 2 Ом
  • На нагревательном элементе – 0-2 Ом для нихромовой катушки, больше 10 Ом для дешевой керамики
  • на термопаре – 0-10 Ом
  • между жалом и ESD заземлением – меньше 2 Ом

Если сопротивление нагревательного элемента слишком велико, скорее всего он поврежден. Лучше обменяйте его на другой (если есть возможность) или купите новый керамический элемент A1321.

Питание
Чтобы вы не запутались в схеме, преобразователь на ней изображен как два преобразователя. В остальном схема довольна проста и у вас не должно возникнуть трудностей с ее чтением.

  1. На выходе каждой вторичной линии напряжения устанавливаем мостовой выпрямитель. Я купил несколько выпрямителей 1000 В 2 А хорошего качества. Преобразователь на 24В линии выдает максимум 2А, а паяльнику нужна мощность 50 Вт, получается общая расчетная мощность будет примерно 48 Вт.
  2. К линии вывода 24В подключен сглаживающий конденсатор 2200 мкф 35 В. Кажется, что можно было взять конденсатор емкостью поменьше, но у меня в планах подключение дополнительных приборов к самодельной станции.
  3. Для снижения напряжения питания контрольной панели с 9В до 5В я использовал регулятор напряжения LM7805T с несколькими конденсаторами.
Читать еще:  Кузнечная печь на газу своими руками

Управление через ШИМ

  1. На второй схеме изображено управление керамическим нагревательным элементом: сигнал с микроконтроллера ATMega идет на МОП-транзистор IRF540N через оптрон РС817.
  2. Значения резисторов на схеме условные, и в окончательной сборке могут быть изменены.
  3. Пины 1 и 2 соответствуют проводам нагревательного элемента.
  4. Пины 4 и 5 (термистор) соединяются с разъемом, к которому подключим операционный усилитель LM358.
  5. К пину 3 подключено ESD заземление паяльника.

Подключения к плате контроллера

Основа паяльной станции – микроконтроллер ATMega8. На этом микроконтроллере достаточно разъемов, чтобы не использовать сдвиговые регистры для входов/выходов и сильно упрощает дизайн устройства.

Три пина ОС для ШИМ дают достаточно каналов для будущих дополнений (например, второй паяльник), а количество каналов АЦП дает возможность контролировать температуру нагрева. На схеме видно, что я добавил дополнительный канал для ШИМ и разъемы для датчика температуры на будущее.

В правом верхнем углу находятся разъемы под поворотный регулятор (А и В для направлений, плюс кнопка-выключатель).
Разъем для ЖК-дисплея разделен на две части: 8 пинов – под питание и данные (пин 8), 4 пина – под настройки контраста/фоновой подсветки (пин 4).

Помимо основных разъемов я добавил 4-хпиновый разъем УАПП для установочной отладки (мы подключим только пины RX, TX и GND).

ISP коннектор не вводим в схему. Для подключения микроконтроллера и его перепрограммирования в любой момент я установил DIP-28 разъем.

R4 и R8 контролируют усиление соответствующих схем (максимально до ста крат).
Какие-то детали будут изменены в ходе сборки, но в целом схема останется такой.

Цифровая паяльная станция 3 в 1 (DSS-1)

Идея создания самодельной паяльной станции у меня возникла давно, но так как я программирую микроконтроллеры не более года, и на просторах интернета подходящей мне паяльной станции я не нашел, то решил сделать паяльную станцию своими руками. Те, кто скажут, что можно купить готовую – могут дальше не читать.

Преимущество данной конструкции в том, что она имеет небольшое количество компонентов и все реализовано на одном микроконтроллере. Также в схеме присутствует дополнительный выход «EXT», куда можно дополнительно подключать паяльник на 40-500Вт / 220В или любую другую инерционную нагрузку.

Характеристики

— напряжение питания – 220В / 50Гц
— максимальная нагрузка выхода «EXT» — не более 1кВт (зависит от симмистора T1)
— номинальная нагрузка выхода «FEN» — около 200-300Вт.
— ток потребления цифровой части схемы – не более 150мА.
— диапазон регулирования температуры паяльника 150 – 350 °C **.
— точность стабилизации температуры ±2 °C
— дискретность установки температуры фена — 10 °С **;
— дискретность установки температуры паяльника — 5 °С **;
— широтно-импульсное пропорциональное регулирование с возможностью подбора коэффициентов пропорциональности, для более точной стабилизации температуры;
— программная корректировка наклона температурной характеристики с установкой коэффициента наклона) ***;
— защита от обрыва термопары;

** (путем изменения прошивки диапазон можно расширить).
*** (программно данная опция отключена, но в исходнике присутствует).

Принципиальная схема паяльной станции приведена ниже.

Элементная база

За основу данной самодельной станции взят микроконтроллер фирмы Atmel ATMega8, который имеет у себя на борту 10-ти битный аналогово-цифровой компаратор, 3-х канальный ШИМ (2 канала по 10 бит и 1 канал 8 бит), аппаратный USART, целую кучу портов ввода-вывода и другие вкусности, но мы их использовать не будем. (IC1 – ATMega8) настроена на работу от внутреннего RC генератора 4MHz. Также включен загрузчик на 512 байт (об этом ниже).

Регистр сдвига (U2 – 74HC595) используется для управления светодиодами. В схеме нарисовано 4 светодиода, на самом деле это два, но двухцветных (в «Proteus-е» и «DipTrace» подходящих я не нашел). Светодиоды подключаются через токоограничительные резисторы. Остальные 4 пина не используются, но могут быть использованы для чего угодно (зуммер, светодиоды, релюшки. и т.д.)

Регистр сдвига (U3 – 74HC595) и (U1 – CD4028B) используется для управления динамической индикацией и опросом кнопок. Индикаторы подключены к выходу дешифратора (U1) через эмиттерные повторители на транзисторах.

Стабилизатор (U7 – LM317) служит для управления скоростью вращения вентилятора фена (обвязка из даташита), а (Q1 – IRFZ44) включает и выключает его.

Стабилизатор (U9 – 78L05) служит для питания всей цифровой части схемы. Его обязательно нужно устанавливать на радиатор, так как на нем гасится около 6 ватт.

Усилители термопар выполнены на (U5 – LM358). От себя хочу добавить, что самая «слабая» часть схемы – это именно они. Сколько я не пытался, но добиться линейности показаний у меня так и не получилось.

На транзисторах VT1 и VT2 реализована схема детектора пересечения нуля (программно это еще не реализовано).

Блок симисторов:

Ничего сверхъестественного – обычный MOC3063 с автоматическим детектором пересечения нуля, и его обвязка взята из даташита.

Блок управления и отображения информации:

В устройстве используется 3 спаренных трехзнаковых семисегментника с общим катодом, выдранных из телефона «Русь», 2 двухцветных светодиода, 9 кнопок управления (2 из которых не задействованы).

Также в схеме «Proteus-а» имеется 2 кнопки (Х1, Х2) которые используются для эмулирования нажатия 2-х кнопок (+/-) одновременно.

Блок питания:

Трансформатор от магнитофона «Романтика 222» 4.704.282 или любой другой с напряжением вторичной обмотки 24 вольта (у меня 22 вольта). Диодный мост (D14 – RS407) и диод (D17 – S20C40) от блока питания компьютера.

Прошивка + загрузчик (Bootloader):

Так как мне хотелось поскорее запустить собранное устройство, было принято решение оставить свободным USART для дальнейших издевательств, поэтому на плате не предусмотрено место под MAX232. Хотя оно особо и не нужно. У меня переходника нет, а вместо него я использую обычный телефонный переходник на PL2303, подключенный напрямую.

Прошивка контроллера содержит подробные комментарии и без переделки может быть залита в кристалл без загрузчика. Однако Fuse биты придется немного изменить.

Прошивка загрузчика (Bootloader-а) полностью взята easyelectronics.ru/avr-uchebnyj-kurs-ispolzovanie-bootloadera.html у DI HALT-а, единственное, я ее немного переделал под себя (о чем имеются комментарии «//***** МОЙ КОД ****» в исходнике загрузчика). Его работу описывать не буду, всё есть на страничке источника.

Положительным результатом входа в загрузчик, является появление на дисплее буквы «F» с точкой в 6-м сегменте.

Загрузчик имеет размер 512 байт, умеет читать и писать Flash и Eeprom, для начала – более чем! Одно НО – выставляйте скорость USART BAUDRATE 19200. Я первое время ставил 9600 и долго не мог понять, почему нет связи с контроллером. Для прошивки через загрузчик используется программа, которая идет в составе AvrStudio4 и находится в папке, она так и называется «AvrProg.exe»

В случае, если Вы не хотите использовать загрузчик при прошивке контроллера необходимо убрать галочку на бите «BOOTRST».

Фен:

Фен самый обыкновенный от паяльной станции Lukey-702 и был куплен за 212 грн.

Паяльник:

Паяльник как видно на фото рассчитан на 220В. «Made in Podval» – сгорел он у меня примерно через два дня. Потом на радиорынке я купил нагревательный элемент Lukey-SENSOTRONIK (для 702/898/852D+FAN) нагреватель 24В, 48Вт со встроенной термопарой, но он оказался меньшего диаметра и длины, поэтому пришлось доматывать алюминиевую фольгу. Теплоотдача никакая, но хватает.

Работа с паяльной станцией

Светодиоды: при нагревании до заданной температуры горит «красный» светодиод, если температура находится в пределах +/-5 градусов от заданной – горит «зеленый» светодиод, если температура превышает заданную более чем на 5 градусов – мигает «красный» светодиод. В случае обрыва термопары попеременно мигает «красный» и «зеленый» и на индикаторе показывает «Err» (нагрузка при этом обесточивается).

Паяльник:

Работа с паяльником осуществляется 3-мя кнопками «Solder on/off», «+5», «-5»

— при включенном паяльнике нажатие на «+5», «-5» соответственно увеличивают/уменьшают заданную температуру о чем свидетельствует мигание индикатора.
— при выключенном паяльнике и продолжительном одновременном нажатии «+5» и «-5» на экран выводится «поправочный коэффициент» в единицах ШИМ (у меня 415 – это число означает, сколько единиц нужно добавить к расчетной ШИМ, чтобы удерживать заданную температуру).

Фен:

Работа с феном осуществляется 3-мя кнопками «Fen on/off», «+10», «-10»

— при включенном фене нажатие на «+10», «-10» соответственно увеличивают/уменьшают заданную температуру о чем свидетельствует мигание индикатора;
— при выключенном фене и продолжительном одновременном нажатии «+10» и «-10» на экран выводится «поправочный коэффициент» в единицах ШИМ (у меня 160);
— после выключения фена на индикаторе мигает текущая температура фена и работает вентилятор пока фен не остынет до температуры менее 30 градусов. Если в это время продолжительно нажать «+10» и «-10» на экран выводится «поправочный коэффициент» (см. выше), после чего отображение падения температуры возобновляется.

Читать еще:  Ракетка для настольного тенниса своими руками

Переменным резистором (VR1) можно варьировать скорость вращения вентилятора фена.

Распиновка выводов фена:

Красный, Белый — Нагревательный элемент, 220В.
Зеленый — Корпус, Заземление.
Коричневый — + питания моторчика.
Черный — — питания моторчика.
Сиреневый — + термопары.
Желтый — Общий провод (термопара и геркон).
Синий — Геркон.

Работа с внешней нагрузкой осуществляется 1-й кнопкой «EXT on/off» (кнопки «+», «-» программно не задействованы).

Переменным резистором (VR4) можно варьировать мощность в нагрузке от 0 до 99,9 %.

ВНИМАНИЕ: Схема в «PROTEUS» кардинально отличается от оригинала и предназначена только для отладки и проверки работоспособности системы! Названия и номиналы деталей не совпадают!

Налаживание

Налаживание устройства начинают с проверки монтажа. Подаем питание и на индикаторах горят прочерки, затем мы одновременно нажимаем 4 кнопки «+10», «-10», «+5», «-5» — в результате чего в EEPROM записываются стандартные значения температуры паяльника и фена равные 230 и 300 градусам соответственно и поправочные коэффициенты паяльника и фена равные 300 и 0 единицам соответственно (см. исходник) и мигнут все светодиоды.

После этого включаем паяльник и ждем пока он прогреется. Показания температуры при этом не будут соответствовать действительности. Берем спичечный коробок и в углу паяльником расплавляем небольшое количество олова так, чтобы жало в него погрузилось. Сюда же окунаем термопару мультиметра и сравниваем показания. Вращением подстроечного резистора VR2 добиваемся одинаковых показаний на индикаторе и мультиметре. После этого, изменением «поправочного коэффициента» добиваемся удержания температуры в заданных пределах.

Настройку фена производим по аналогичной методике.

Программа написана на «С» с использованием компилятора CodeVision. Будет интересно услышать отзывы по поводу оптимизации кода или каких-то доработках.

При разработке использовались следующие источники и программы:

Простая паяльная станция своими руками

Собрать самостоятельно максимально простую и достаточно надёжную паяльную установку вполне возможно. Для этого достаточно приобрести минимальный набор материалов, а также подготовить рабочие инструменты и выбрать правильную схему изготовления станции своими руками.

Необходимые инструменты и материалы

Самым простым вариантом для изготовления своими руками станет паяльная термовоздушная установка, собранная на основе традиционного паяльника.

Необходимые материалы и инструменты для самостоятельного изготовления представлены:

  • паяльником с рукоятью из древесины;
  • аквариумным компрессором;
  • шуруповёртом;
  • сверлом;
  • медицинской капельницей;
  • фольгой;
  • небольшой частью антенны;
  • многожильным кабелем.

Чаще всего в изготовлении применяются заводские модули, а при необходимости может быть разработана собственная схема на основе доступных по цене готовых компонентов.

Пошаговая инструкция

После того как будет подготовлен весь необходимый для изготовления материал и инструмент, следует приступить к самостоятельной сборке прибора.

  1. Демонтаж рукояти и откручивание проводов, соединяющих нагревательный элемент с питающим кабелем.

Провод протаскивается через рукоятку, после чего в боковой части осторожно высверливается небольшое отверстие.

В высверленное в рукояти отверстие необходимо вставить и протянуть питающий провод, привязанный к небольшому кусочку проволоки, после чего часть капельницы с резинкой разрезается строго пополам.

Оставшуюся часть капельницы, оснащённую трубочкой, следует аккуратно вставить в рукоять инструмента, на место расположения питающего провода.

Полученное соединение отличается высокой надёжностью и абсолютной герметичностью, что позволяет подключить к питающему проводу изъятый на первом этапе нагревательный элемент.

Участки соединений на проводах должны быть качественно заизолированы, после чего все охлаждающие отверстия нагревательного элемента тщательно обматываются обычной фольгой.

Для получения максимально надёжного соединения, обмоточная фольга фиксируется при помощи обычной медной проволоки.

Сопло, обеспечивающее направление воздушного потока, выполняется из отрезка антенной трубочки, которая устанавливается на месторасположения жала.

Отверстие, сквозь которое проходит питающий провод, требуется тщательно загерметизировать, после чего подключается стандартный аквариумный компрессор. Готовая термовоздушная паяльная установка способна обеспечивать накал в пределах 300–310 градусов, что является вполне достаточным показателем для проведения работ с самыми мелкими элементами плат. С целью повышения уровня мощности выполняется намотка на нагревательный элемент обычной нихромовой нити и осуществляется установка более производительного компрессора.

Меры предосторожности

С целью обеспечения безопасной эксплуатации паяльной станции необходимо чётко следовать прилагаемой производителем инструкции:

  • прежде чем приступить к работе с антистатической паяльной установкой, необходимо убедиться в нормальном, рабочем состоянии электрического питания;
  • следует оградить устройство от любых тяжёлых механических воздействий, вызывающих повреждения прибора;
  • паяльная станция любого вида должна использоваться исключительно по своему прямому назначению;
  • нельзя осуществлять работу паяльной станцией вблизи быстро и легковоспламеняющихся предметов;
  • запрещается в процессе работы контактировать с насадкой фена, жалом паяльника или смежными с ними частями;
  • ремонтные работы и замена элементов в паяльной установке осуществляются только после отключения прибора от сети и его полного остывания;
  • нельзя работать с электроинструментом мокрыми руками;
  • прибор должен храниться в недоступном для детей месте.

Если в процессе пайки с поверхности выделяется дым, то работы должны осуществляться только в хорошо проветриваемых помещениях.

Строим воздушную паяльную станцию малой мощности

Конструкция паяльной станции состоит из четырех основных элементов:

  • Платы управления процессом нагрева;
  • Корпуса;
  • Блока питания;
  • Фена и паяльника.

Блок питания и корпус подбирают в соответствии с имеющимися ресурсами. Остальные узлы придется покупать или делать собственноручно.

Главный рабочий инструмент воздушной паяльной станции

Главным рабочим органом паяльной станции является фен с электрической спиралью и кулером, продувающий горячий воздух на поверхность пайки или микрочипа. Устройство его несложное, и при желании можно намотать нихровомовую спираль от обыкновенного низковольтного паяльника на керамическую трубку.

Нагревательный элемент изолируют несколькими слоями стеклоткани. Нихром не будет нагреваться до состояния раскаленного металла, но заизолировать поверхность необходимо хотя бы для того, чтобы металлическая поверхность не окислялась. На выходе из нагревательного устройства необходимо установить керамическое кольцо или сопло, диаметром 8-10 мм. Лучше всего подойдут термостойкие фишки, фиксирующие нагревательные спирали в старых утюгах. Мощность нагревателя для паяльной станции потребуется в пределах 400-500Вт, не менее.

Для организации наддува можно использовать кулер от компьютера, или взять за основу корпус с двигателем и вентилятором от походного фена. Но в этом случае придется разрабатывать свой вариант управления оборотами двигателя и напором воздушного потока.

Из практики можно сказать, что управление подачей воздуха паяльной станции должно быть только автоматическим, в противном случае включение-выключение клапана перепуска давления сделает процесс пайки настоящей мукой, а не работой.

Кроме того, в конструкции фена должна быть установлена термопара, с помощью которой, собственно, и регулируется температура воздуха.

Схему подключения фена можно выполнить так, как указано на рисунке ниже.

От того, насколько удобным и безопасным в работе получится конструкция фена, зависит качество пайки, поэтому, если у вас нет желания морочить голову самоделками, то можно купить обычный фен от настольной паяльной станции Luckey, модель702, и просто адаптировать ее к плате управления.

Система управления паяльной станцией

Из приведенного списка наиболее сложным узлом паяльной станции для постройки своими руками является плата управления. Ее можно купить готовой, но если есть опыт постройки подобных конструкций, схему вполне по силам собрать своими руками, комплект деталей можно заказать в сети.

Из всех существующих вариантов, доступных в онлайне, наиболее надежной и удобной в работе признана схемка на основе контролера ATMEGA серия 328р. Плата собрана на основе по приведенной ниже схеме.

Сборка выполняется на стеклотекстолитовой плате, и при нормальном качестве монтажа система управления паяльной станции запускается с первой попытки. При сборке платы потребуется крайне осторожно выполнять пайку элементов, особенно питающей цепи чипа, сделать землю и постараться не переусердствовать с нагревом ножек. Но, прежде всего, нужно будет программатором забить программный код управления. В качестве блока питания паяльной станции используется импульсник на 24В-6А со встроенной защитой от перегрузки.

В схеме управления паяльной станции используется пара мощных мосфетов IRFZ44N, нужно предпринять меры по защите от перегрева и выгорания. Если нагреватель фена получился чересчур мощным, вполне возможно срабатывание блокировки блока питания.

Симмистор и оптоэлектронную пару желательно вывести на отдельную плату, и обязательно установить радиатор охлаждения. Для оптопары рекомендуется использовать сравнительно маломощные светодиоды управления с максимальным током потребления до 20 миллиампер.

Читать еще:  Ночник «Млечный Путь» своими руками

В конструкции паяльной станции используется пятипиновый паяльник мощностью в 50 Вт. Разработчики рекомендуют использовать Arrial 936, но можно установить любой аналогичный инструмент с предустановленной термопарой.

Сборка и регулировка работы станции

Все элементы монтируются в закрытый штамповый корпус от старого блока питания, на заднюю стенку выносится радиатор и включатель, на передней индикатор температуры.

Управление паяльной станцией осуществляется тремя переменными сопротивлениями на 10 кОм Первыми двумя регулируется температура паяльника и фена, третьим выставляются обороты фенового вентилятора.

Процесс регулировки касается только юстирования на плате паяльной станции температуры нагрева паяльника и фена. Для этого подключаем питание к паяльнику и термопарой с тестером измеряем реальную температуру нагрева жала. Далее подстроечным резистором выводим показание на цифровом индикаторе станции в соответствии с данными тестера. Аналогичным способом измеряем температуру воздушного потока фена и регулируем подстроечником показания на индикаторе. Если задрать обороты вентилятора фена, то место пайки можно легко разогреть до 450 о С.

Маленькая паяльная станция своими руками v2

Некоторое время назад я собрал маленькую паяльную станцию, о которой хотел рассказать. Это дополнительная упрощенная паяльная станция к основной, и конечно не может ее полноценно заменить.

Основные функции:

1. Паяльник. В коде заданы несколько температурных режимов (100, 250 и 350 градусов), между которыми осуществляется переключение кнопкой Solder. Плавная регулировка мне тут не нужна, паяю я в основном на 250 градусах. Мне лично это очень удобно. Для точного поддержания температуры используется PID регулятор.

Заданные режимы, пины, параметры PID можно поменять в файле 3_Solder:

2. Фен. Также заданы несколько температурных режимов (переключение кнопкой Heat), PID регулятор, выключение вентилятора только после остывания фена до заданной температуры 70 градусов.

Заданные режимы, пины, параметры PID можно поменять в файле 2_Air:

  1. Паяльник применил от своей старой станции Lukey 936A, но с замененным нагревательным элементом на китайскую копию Hakko A1321.
  2. Кнопка отключения отключает сразу все что было включено.
  3. Можно одновременно включать и паяльник и фен.
  4. На разъеме фена присутствует напряжение 220В, будьте осторожны.
  5. Нельзя отключать паяльную станцию от сети 220В пока не остынет фен.
  6. При отключенном кабеле паяльника или фена, на дисплее будут максимальные значения напряжения с ОУ, пересчитанные в градусы (не ноль). Поясню: если например просто подключить кабель холодного паяльника должен показывать комнатную температуру, при отключении покажет например 426. Какой в этом плюс: если случайно оборвется провод термопары или терморезистора, на выходе ОУ будет максимальное значение и контроллер просто перестанет подавать напряжение на нагреватель, так как будет думать что наш паяльник раскален и его нужно охладить.
  7. Защиты от КЗ нет, поэтому рекомендую установить предохранители.
  8. Стабилизатор на 5В для питания Arduino используйте любой доступный с учетом напряжения питания вашего БП и нагрева в случае линейного стабилизатор. Так как у меня напряжение 20В установил 7805.
  9. Паяльник прекрасно работает и при 30В питания, как в моей основной паяльной станции. Но при использовании повышенного напряжения учитывайте все элементы: стабилизатор 5В и то что напряжение вентилятора 24В.

Основные узлы и состав:

1. Основная плата:

— Arduino Pro mini,
— сенсорные кнопки,
— дисплей от телефона Nokia 1202.

2. Плата усилителей:

— усилитель терморезистора паяльника,
— полевой транзистор нагрева паяльника,
— усилитель термопары фена,
— полевой транзистор включения вентилятора фена.

3. Плата симисторного модуля

— оптосимистор MOC3063,
— симистор со снабберной цепочкой.

— блок питания от ноутбука 19В 3.5А,
— выключатель,
— стабилизатор для питания Arduino.

А теперь подробнее по узлам.

1. Основная плата


Обратите внимание наименование сенсорных площадок отличается от фото. Дело в том, что в связи с отказом от регулировки оборотов вентилятора, в коде я переназначил кнопку включения фена. В самом начале регулировка оборотов была реализована, но так как напряжение моего БП 20В (увеличил на 1В добавлением переменного резистора), а вентилятор на 24В, решил отказаться. Сигнал с сенсорных кнопок TTP223 (включены в режиме переключателя Switch, на пин TOG подан 3.3В) считывается Arduino. Дисплей подключен через ограничительные резисторы для согласования 5В и 3.3В логики. Такое решение не совсем правильное, но уже работает несколько лет в разных устройствах.

Основная плата двухстороннего печатного монтажа. Металлизацию оставлял по максимуму, чтобы уменьшить влияние помех, а также для упрощения схемы сенсорных кнопок (для TTP223 требуется конденсатор по входу на землю для уменьшения чувствительности. Без него кнопка будет срабатывать просто при приближении пальца. Но так как у меня сделана сплошная металлизация этот конденсатор не требуется). Сделан вырез под дисплей.

На верхней стороне находятся площадки сенсорных кнопок, наклеена лицевая панель, припаивается дисплей. Площадки сенсорных кнопок и дисплей подключены к нижней стороне через перемычки тонким проводом. Типоразмер резисторов и конденсатора 0603.

Лицевую панель, по размерам из 3Д модели, я сначала нарисовал в программе FrontDesigner-3.0_rus, в файлах проекта лежит исходник.

Распечатал, вырезал по контуру, а также окно для дисплея.

Далее заламинировал самоклеящейся пленкой для ламинирования и приклеил к плате. Дисплей за также приклеен к этой пленке. За счет выреза в плате дисплей получился вровень с основной платой.

На нижней стороне находится Arduino Pro mini и микросхемы сенсорных кнопок TTP223.

2. Плата усилителей

Схема паяльника состоит из дифференциального усилителя с резистивным мостом и полевого транзистора с обвязкой.

  1. Для увеличения «полезного» диапазона выходного сигнала при низкоомном терморезисторе (в моем случае в китайской копии Hakko A1321 56 Ом при 25 градусах, для сравнения в 3д принтерах обычно стоит терморезистор сопротивлением 100 кОм при 25 градусах) применен резистивный мост и дифференциальный усилитель. Для уменьшения наводок параллельно терморезистору и в цепи обратной связи стоят конденсаторы. Данная схема нужна только для терморезистора, если в вашем паяльнике стоит термопара, то нужна схема усилителя аналогичной в схеме фена. Настройка не требуется. Только измерить сопротивление вашего терморезистора при 25 градусах и поменять при необходимости резистор 56Ом на измеренный.
  2. Полевой транзистор был выпаян из материнской платы. Резистор 100 кОм нужен чтобы паяльник сам не включился от наводок если ардуина например отключится, заземляет затвор полевого транзистора. Резисторы по 220 Ом для ограничения тока заряда затвора.

Схема фена состоит из неинвертирующего усилителя и полевого транзистора.

  1. Усилитель: типовая схема. Для уменьшения наводок параллельно термопаре и в цепи обратной связи стоят конденсаторы.
  2. Обвязки у полевого транзистора ME9926 нет, это не случайно. Включение ничем не грозит, просто будет крутится вентилятор. Ограничения тока заряда затвора тоже нет, так как емкость затвора небольшая.

Типоразмер резисторов и конденсаторов 0603, за исключением резистора 56 Ом — 1206.
Настройка не требуется.

Нюансы: применение операционного усилителя LM321 (одноканальный аналог LM358) для дифферециального усилителя не является оптимальным, так как это не Rail-to-Rail операционный усилитель, и максимальная амплитуда на выходе будет ограничена 3.5-4 В при 5В питания и максимальная температура (при указанных на схеме номиналах) будет ограничена в районе 426 градусов. Рекомендую использовать например MCP6001. Но нужно обратить внимание что в зависимости от букв в конце отличается распиновка:

3. Плата симисторного модуля

Схема стандартная с оптосимистором MOC3063. Так как MOC3063 сама определяет переход через ноль напряжения сети 220В, а нагрузка — нагреватель инерционный элемент, использовать фазовое управление нет смысла, как и дополнительных цепей контроля ноля.

Нюансы: можно немного упростить схему если применить симистор не требующий снабберной цепочки, у них так и указано snubberless.

4. Блок питания

Выбор был сделан по габаритным размерам и выходной мощности в первую очередь. Также я немного увеличил выходное напряжение до 20В. Можно было и 22В сделать, но при включении паяльника срабатывала защита БП.

5. Корпус

Корпус проектировался под мой БП, с учетом размеров плат и последующей печати на 3Д принтере. Металлический даже не планировался, приличный алюминиевый анодированный корпус дороговато и царапается, и куча других нюансов. А гнуть самому красиво не получится.

Обзор самоделок на Arduino

Ну и напоследок рекомендуем вам ознакомиться с более сложными схемами сборки самодельной паяльной станции на базе платформы Ардуино:

Надеемся, что рассмотренные способы вам понравились. Осталось только выбрать наиболее подходящий вариант и воплотить его в жизнь.

Рекомендуем также прочитать:

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector