Сенсорные кнопки в Ардуино
Ни для кого не секрет, что прогресс не стоит на месте. Постоянно появляются новые технологии, совершенствуются старые. Сенсорные экраны появились совсем недавно (по меркам человечества), но уже прочно вошли в нашу повседневную жизнь. Телефоны, телевизоры, терминалы и прочие в большинстве своём используют «беcкнопочные» технологии. В кавычках это слово по той причине, что они всё-таки используют кнопки, только сенсорные. О них в данной статье как раз и пойдёт речь, а если точнее, о Touch module для Arduino.
Принцип работы сенсорных кнопок
Модули с сенсорными кнопками в большинстве своём используют проекционно-ёмкостные сенсорные экраны (https://ru.wikipedia.org/wiki/Сенсорный_экран). Если не вдаваться в пространственные объяснения их работы, для регистрации нажатия используется вычисление изменения ёмкости конденсатора (электрической цепи), при этом важной особенностью является возможность выставлять различную начальную ёмкость, в чём мы убедимся далее.
Человеческое тело обладает некоторой электрической емкостью, а следовательно, и невысоким реактивным сопротивлением для переменного электрического тока. Если прикоснуться пальцем либо каким-либо электропроводящим объектом, то через них потечет небольшой ток утечки от устройства. Специальный чип определяет эту утечку и подаёт сигнал о нажатии кнопки. Плюсами данной технологии являются: относительная долговечность, слабое влияние загрязнений и устойчивость к попаданию воды.
Сенсорные или механические кнопки
+ Сенсорная кнопка «ощущает» нажатие даже через небольшой слой неметаллического материала, что обеспечивает разнообразие в использовании её во всевозможных проектах.
+ Из предыдущего пункта вытекает и этот – возможность использовать сенсорную кнопку внутри корпуса повышает привлекательность проекта, что не влияет на функционал, но достаточно важно в повседневной жизни, чтобы не обращать на это внимание.
+ Стабильное функционирование, которое выражается отсутствием подвижных частей и частой калибровкой (о чём будет сказано ниже). Вам не придется беспокоиться о дребезге кнопок, возникающем при использовании механического собрата, что существенно облегчит жизнь начинающему ардуинщику. Поэтому ещё один плюс, пусть и не для всех – простота при работе.
Из минусов можно отметить следущее:
- Сенсорные кнопки плохо работают при минусовых температурах, поэтому они непригодны для использования за пределами помещений.
- Высокое потребление электричества, вызванное необходимостью постоянно поддерживать одинаковую ёмкость.
- Сенсорная кнопка не работает при нажатии её рукой в перчатке либо плохо проводящим электричество объектом
Емкостное – этот способ основан не том что контактное устройство срабатывает за счет касания металлической пластины (сенсора) при чём такую пластину-сенсор можно спрятать за тонким декоративным покрытием. Так как нам известно, что человеческое тело, обладает определенную (довольно большую) емкостью.
Рисунок №1 – Ёмкостной сенсор – общая схема
Резистивное – состоящее из двух металлических пластин (выступающих в роле сенсора). Так как, кожный покров человека имеет некоторое сопротивление (конкретно можно посмотреть в справочнике по медицине), срабатывание исполнительной части происходит вследствие замыкания пальцем, обоих пластин.
Классификация переключателей
Чтобы правильно выбрать коммуникатор, следует исходить из назначения помещения, количества и характеристик светильников. По параметру напряжению устройства бывают:
- 220 В — стандартный показатель для большинства приборов;
- 12 В — подойдёт к LED лентам и некоторым другим типам осветителей.
По количеству подключённых источников света применяют одинарные, двойные, тройные выключатели. Большее количество удобнее контролировать дистанционным пультом.
По виду ключа можно выделить:
- с электромагнитным реле — замыкание происходит механически, поэтому контакты со временем обгорают;
- оснащённые симистором — полупроводниковый прибором.
Типы чувствительного элемента в бытовых переключателях:
- ёмкостный — требует легкого касания;
- оптический — реагирует на движение или уровень освещённости;
- высокочастотный — настроен на присутствие, заполненность помещения (объёма), движение.
- датчики движения, объёма, звука;
- беспроводное управление;
- плавное снижение яркости при выключении;
- таймер.
Сенсорные переключатели расширяют возможности освещения, упрощают управление, позволяют экономить время и затраты электроэнергии. Они могут быть автономными или монтироваться в корпуса светильников: торшеров, настольных ламп, LED профилей.
Режимы выходных ключей
Восемь выходных ключей разделены на две группы по четыре ключа в каждой. Уровень единицы на выходах каждой группы независимо устананавливается джамерами «5/3.3» и может быть 3,3В или 5В.
Сигналы с выходных ключей могут быть использованы как цифровые для дальнейшей обработки любыми микроконтроллерными устройствами (Arduino, Raspberry Pi и др.) или как самостоятельный модуль управляющий реле.
К модулю можно подключить сенсорные кнопки RDC1-0031, где размещены 8 сенсорных площадок со светодиодной индикацией и восьмиканальный инвертирующий драйвер для равномерного свечения светодиодов.
Это открытый проект! Лицензия, под которой он распространяется – Creative Commons – Attribution – Share Alike license.
Кратко о безопасности
При подключении сенсорного управления источниками освещения следует придерживаться тех же ном и правил, что предписываются для механических выключателей. То есть, перед началом работы необходимо обесточить линию, где будет производиться монтаж. Далее, придерживаемся следующих норм:
- Выключатели должны быть включены в сеть таким образом, чтобы производилась коммутация фазы, а не нуля.
- Если в сети питания используется заземляющий провод, он должен быть подключен к соответствующему контакту.
- Если для монтажа используется многожильный провод, то его концы необходимо опрессовать или залудить. В противном случае возможно нарушение контакта, что приведет к нагреву соединения.
- Нельзя использовать сенсорный выключатель с явными признаками нарушения целостности конструкции.
- Нагрузка должна соответствовать параметрам коммутатора.