1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Универсальный тестер радиокомпонентов

Универсальный тестер радиокомпонентов

Любому, кто работает с электроникой, требуется тестер радиоэлектронных компонентов. В большинстве случаев электронщики всех мастей обходятся цифровым мультиметром. Им можно проверить с достаточной точностью самые частоиспользуемые электронные компоненты: диоды, биполярные транзисторы, конденсаторы, резисторы и пр.

Но, среди радиодеталей есть и такие, проверить которые рядовым мультиметром сложно, а порой и невозможно. К таким можно отнести полевые транзисторы (как MOSFET, так и J-FET). Также, обычный мультиметр не всегда имеет функцию замера ёмкости конденсаторов, в том числе и электролитических. И даже если таковая функция имеется, то прибор, как правило, не измеряет ещё один очень важный параметр электролитических конденсаторов – эквивалентное последовательное сопротивление (ЭПС или ESR).

С недавнего времени стали доступны по цене универсальные измерители R, C, L и ESR. Многие из них обладают возможностью проверки практически всех ходовых радиодеталей.

Давайте узнаем, какими возможностями обладает такой тестер. На фото универсальный тестер R, C, L и ESR — MTester V2.07 (QS2015-T4). Он же LCR T4 Tester. Приобрёл я его на Алиэкспресс. Не удивляйтесь, что прибор без корпуса, с ним он стоит куда дороже. Вот здесь вариант без корпуса, а вот здесь с корпусом.

Тестер радиодеталей собран на микроконтроллере Atmega328p. Также на печатной плате имеются SMD-транзисторы с маркировкой J6 (биполярный S9014), M6 (S9015), интегральный стабилизатор 78L05, TL431 — прецизионный регулятор напряжения (регулируемый стабилитрон), SMD-диоды 1N4148, кварц на 8,042 МГц. и «рассыпуха» — планарные конденсаторы и резисторы.

Прибор запитывается от батарейки на 9V (типоразмер 6F22). Впрочем, если такой нет под рукой, прибор можно запитать и от стабилизированного блока питания.

На печатной плате тестера установлена ZIF-панель. Рядом указаны цифры 1,2,3,1,1,1,1. Дополнительные клеммы верхнего ряда ZIF-панели (те, которые 1,1,1,1) дублируют клемму под номером 1. Это для того, чтобы было легче устанавливать детали с разнесёнными выводами. Кстати, стоит отметить, что нижний ряд клемм дублирует клеммы 2 и 3. Для 2 отведено 3 дополнительных клеммы, а для 3 уже 4. В этом можно убедиться, осмотрев разводку печатных проводников на другой стороне печатной платы.

Итак, каковы же возможности данного тестера?

Замер ёмкости и параметров электролитического конденсатора.

Для начала проверим электролитический конденсатор на 1000 мкФ * 16V. Подключаем один вывод электролита к выводу 1, а другой к выводу 3.

Можно подключит один из выводов к клемме 2. Прибор сам определит, к каким выводам подключен конденсатор. Далее жмём на красную кнопку.

На экране результат: ёмкость — 1004 мкФ (1004 μF); ЭПС — 0,05 Ом (ESR = 0,05Ω); Vloss = 1,4%. О параметре Vloss расскажу позднее.

Проверка танталового электролитического конденсатора 22 мкФ * 35в.

Результат: ёмкость — 24,4 мкФ; ЭПС — 0,2 Ом., Vloss = 0,4%

Тестер можно использовать и для замера ёмкости у обычных конденсаторов с ёмкостью где-то от 20 пикофарад (20pF). Если подключить к ZIF-Панели выносные щупы, то можно проверять и детали, выполненные в корпусах для поверхностного (SMT) монтажа. Я, например, с помощью этого тестера подбирал SMD-конденсаторы и резисторы.

Обращаю внимание! Перед тестированием конденсаторов, особенно электролитических, их необходимо разрядить! Иначе можно повредить прибор высоким остаточным напряжением. Особенно это относится к электролитам, выпаянным с плат.

Таинственный параметр Vloss.

При проверке конденсаторов, кроме ёмкости и ESR, универсальный тестер показывает ещё такой параметр, как Vloss. Что же он означает? К сожалению, точного и конкретного обоснования этого термина я не нашёл. Но, судя по всему, он косвенно указывает на уровень утечки конденсатора. Как известно, реальный конденсатор имеет сопротивление диэлектрика между обкладками. Благодаря этому сопротивлению конденсатор медленно разряжается из-за, так называемого, тока утечки.

Так вот, при заряде конденсатора коротким импульсом тока напряжение на его обкладках достигает определённого уровня. Но, как только заряд конденсатора прекращается, напряжение на заряженном конденсаторе падает на очень небольшую величину. Разность между максимальным напряжением на конденсаторе и тем, что наблюдается после завершения заряда и выражают как Vloss. Чтобы было удобней, Vloss выражают в процентах.

Падение напряжения на обкладках конденсатора объясняют как внутренним рассеиванием заряда, так и сопротивлением между обкладками, которое имеется у всех конденсаторов, так как любой диэлектрик имеет, пусть и большое, но сопротивление.

Для керамических и электролитических конденсаторов высокий показатель Vloss в несколько процентов свидетельствует о плохом качестве конденсатора.

Читать еще:  Делаем своими руками лодки, катамараны и другие самодельные плавательные устройства

Проверка полевых J-FET и MOSFET транзисторов.

Теперь давайте протестируем широко известный MOSFET транзистор IRFZ44N. Вставляем его в панель так, чтобы его выводы были подключены к клеммам 1,2,3.

Никаких правил подключения соблюдать не надо, как уже говорилось, прибор сам определить цоколёвку детали и выдаст результат на дисплей.

На дисплее, кроме цоколёвки транзистора и его типа (n-канальный MOSFET), тестер указывает величину порогового напряжения открытия транзистора VGS(th) (Vt = 3,74V) и ёмкость затвора транзистора Ciis (C = 2,51nF). Если заглянуть в даташит на IRFZ44N и найти там значение VGS(th), то можно обнаружить, что оно находится в пределах 2 — 4 вольт.

Более подробно об основных параметрах MOSFET-транзисторов я уже писал здесь.

Также советую заглянуть на страничку, где рассказывается о разновидностях полевых транзисторов и их обозначении на схеме. Это поможет понять, что же вам показывает прибор.

Проверка биполярных транзисторов.

В качестве подопытного «кролика» возьмём наш КТ817Г. Как видим, у биполярных транзисторов измеряется коэффициент усиления hFE (он же h21э) и напряжение смещения Б-Э (открытия транзистора) Uf. Для кремниевых биполярных транзисторов напряжение смещения находится в пределах 0,6

0,7 вольт. Для нашего КТ817Г оно составило 0,615 вольт (615mV).

Составные биполярные транзисторы тоже распознаёт. Вот только параметрам на дисплее я бы верить не стал. Ну, действительно. Не может составной транзистор иметь коэффициент усиления hFE = 37. Для КТ973А минимальный hFE должен быть не менее 750.

Как оказалось, структуру для КТ973А (PNP) и КТ972А (NPN) определяет верно. Но вот всё остальное замеряет некорректно.

Стоит учесть, что если хотя бы один из переходов транзистора пробит, то тестер может определить его как диод.

Проверка диодов универсальным тестером.

Образец для испытаний — диод 1N4007.

Для диодов указывается падение напряжения на p-n переходе в открытом состоянии Uf. В техдокументации на диоды указывается как VF — Forward Voltage (иногда VFM). Замечу, что при разном прямом токе через диод величина этого параметра также меняется.

Для данного диода 1N4007: VF=677mV (0,677V). Это нормальное значение для низкочастотного выпрямительного диода. А вот у диодов Шоттки это значение ниже, поэтому их и рекомендуют применять в устройствах с низковольтным автономным питанием.

Кроме этого тестер замеряет и ёмкость p-n перехода (C=8pF).

Результат проверки диода КД106А. Как видим, ёмкость перехода у него во много раз больше, чем у диода 1N4007. Аж 184 пикофарады!

Если вместо диода установить светодиод и включить проверку, то во время тестирования он будет задорно помигивать.

Для светодиодов тестер показывает ёмкость перехода и минимальное напряжение, при котором светодиод открывается и начинает излучать. Конкретно для этого красного светодиода оно составило Uf = 1,84V.

Как оказалось, универсальный тестер справляется и с проверкой сдвоенных диодов, которые можно встретить в компьютерных блоках питания, преобразователях напряжения автоусилителей, всевозможных блоках питания.

Проверка сдвоенного диода MBR20100CT.

Тестер показывает падение напряжения на каждом из диодов Uf = 299mV (в даташитах указывается как VF), а также цоколёвку. Не забываем, что сдвоенные диоды бывают как с общим анодом, так и общим катодом.

Проверка резисторов.

Данный тестер отлично справляется с замером сопротивления резисторов, в том числе переменных и подстроечных. Вот так прибор определяет подстроечный резистор типа 3296 на 1 кОм. На дисплее переменный или подстроечный резистор отображается в виде двух резисторов, что не удивительно.

Также можно проверить постоянные резисторы с сопротивлением вплоть до долей ома. Вот пример. Резистор сопротивлением 0,1 Ома (R10).

Замер индуктивности катушек и дросселей.

На практике не менее востребована функция замера индуктивности у катушек и дросселей. И если на крупногабаритных изделиях наносят маркировку с указанием параметров, то вот на малогабаритных и SMD-индуктивностях такой маркировки нет. Прибор поможет и в этом случае.

На дисплее результат измерения параметров дросселя на 330 мкГ (0,33 миллиГенри).

Кроме индуктивности дросселя (0,3 мГ) тестер определил его сопротивление постоянному току — 1 Ом (1,0Ω).

Маломощные симисторы данный тестер проверяет без проблем. Я, например, проверял им MCR22-8.

А вот более мощный тиристор BT151-800R в корпусе TO-220 прибор протестировать не смог и отобразил на дисплее надпись «? No, unknown or damaged part», что в вольном переводе означает «Отсутствует, неизвестная или повреждённая деталь».

Кроме всего прочего, универсальный тестер может замерять напряжение батареек и аккумуляторов.

Я был обрадован ещё и тем, что данным прибором можно проверить оптопары. Правда, проверить такие «составные» детали можно только в несколько этапов, поскольку они состоят минимум из двух изолированных между собой частей.

Покажу на примере. Вот внутреннее устройство оптопары TLP627.

Излучающий диод подключается к выводам 1 и 2. Подключим их к клеммам прибора и посмотрим, что он нам покажет.

Читать еще:  Как сделать Соленоидный Двигатель своими руками

Как видим, тестер определил, что к его клеммам подключили диод и отобразил напряжение, при котором он начинает излучать Uf = 1,15V. Далее подключаем к тестеру 3 и 4 выводы оптопары.

На этот раз тестер определил, что к нему подключили обычный диод. В этом нет ничего удивительного. Взгляните на внутреннюю структуру оптопары TLP627 и вы увидите, что к выводам эмиттера и коллектора фототранзистора подключен диод. Он шунтирует выводы транзистора и тестер «видит» только его.

Так мы проверили исправность оптопары TLP627. Похожим образом мне удалось проверить и маломощное твёрдотельное реле типа К293КП17Р.

Теперь расскажу о том, какие детали этим тестером НЕ проверить.

Мощные тиристоры. При проверке тиристора BT151-800R прибор показал на дисплее биполярный транзистор с нулевыми значениями hFE и Uf. Другой экземпляр тиристора определил как неисправный. Возможно, это действительно так и есть;

Стабилитроны. Определяет как диод. Основных параметров стабилитрона вы не получите, но можно удостовериться в целостности P-N перехода. Производителем заявлено корректное распознавание стабилитронов с напряжением стабилизации менее 4,5V.
При ремонте всё-таки рекомендую не полагаться на показания прибора, а заменять стабилитрон новым, так как бывает, что стабилитроны исправны, но напряжение стабилизации «гуляет»;

Любые микросхемы, такие как интегральные стабилизаторы 78L05, 79L05 и им подобные. Думаю, пояснения излишни;

Динисторы. Собственно, это понятно, так как динистор открывается только при напряжении в несколько десятков вольт, например, 32V, как у распространённого DB3;

Ионисторы прибор также не распознаёт. Видимо из-за большого времени заряда;

Варисторы определяет как конденсаторы;

Однонаправленные супрессоры определяет как диоды.

Универсальный тестер не останется без дела у любого радиолюбителя, а радиомеханикам сэкономит кучу времени и денег.

Стоит понимать, что при проверке неисправных полупроводниковых элементов, прибор может определить тип элемента некорректно. Так, биполярный транзистор с одним пробитым p-n переходом, он может определить как диод. А вздувшийся электролитический конденсатор с огромной утечкой распознать как два встречно-включенных диода. Такое бывало. Думаю, не надо объяснять, что это свидетельствует о негодности радиодетали.

Но, стоит учесть тот факт, что также имеет место и некорректное определение значений из-за плохого контакта выводов детали в ZIF-панели. Поэтому в некоторых случаях следует повторно установить деталь в панель и провести проверку.

Внешний вид устройства

Электронный тестер представляет из себя небольшое устройство с дисплеем, кнопкой-энкодером и специальной контактной площадкой для подключения электронных компонентов (ZIF-панель).

У дешевых тестеров дисплеи простые текстовые, на которых отображается только основная информация, более навороченные оснащены графическим дисплеем с отображением пиктограмм элементов. На такой экран помещается больше информации. ZIF-панель сделана для удобного крепления контактов измеряемого элемента.

Кнопка служит для включения и одновременного измерения номинала элемента, в более дорогих моделях предусмотрен еще и энкодер для перемещения по меню, выбора опций, а также тонкой настройки прибора.

Прибор для проверки предельных значений напряжений радиодеталей

При ремонте, настройке, создания новых схем схем бывает нужен прибор для проверки величин допустимых напряжений и напряжений утечек транзисторов, диодов, конденсаторов и других радиодеталей.

В статье, ниже представлена схема такого прибора на основе преобразователя на МС 1211ЕУ1.

Преобразователь напряжения выполнен по типовой схеме включения на двухтактном микроконтроллере электронных пускорегулирующих аппаратов ЭПРА 1211ЕУ1. Микросхема представляет специализированный микроконтроллер с питанием от 3 до 24 Вольт, с малой потребляемой мощностью, выполненного на полевых транзисторах. Данный контроллер имеет двухтактный выходной каскад с защитным интервалом, содержит малое количество навесных элементов, имеет два вывода для защиты по питанию, вывод для выбора рабочей частоты, максимальный выходной ток 250 мА.

Схема прибора

Номиналы резисторов для каждого прибора разные и выбираются по отклонению стрелки на последнее деление шкалы при закороченных клеммах К-Э. Чувствительность магнитной системы применяемого прибора должна быть в пределах 10-50 мкА. Стрелочный прибор с чувствительностью более 50 микроАмпер ставить нельзя, при таком токе существует возможность выхода из строя проверяемых полупроводниковых элементов.

Назначение прибора

При помощи измерителя предельных рабочих напряжений P-N переходов можно проводить следующие измерения:

  • Точно и без вреда измерять предельно допустимые напряжения переходов всех полупроводниковых приборов.
  • Определять необходимую величину сопротивления запирающего резистора в цепи Б-Э.
  • Исследовать зависимость величины сопротивления базового резистора от изменения коллекторного напряжения и температуры.
  • Проверять качество изоляции.
  • Проверять напряжения утечек.

Теоретические обоснования

Максимальное напряжение, которое может выдержать транзистор, а точнее P-N переход, ограничивается напряжением пробоя. Пробой перехода выражается резким увеличением обратного тока при достижении обратным напряжением критического значения. Если при проверке рабочий ток ограничить, до гарантировано безопасного уровня, порядка 10-50 микроАмпер, то никакого вреда испытуемому элементу при проверке нанесено не будет. В доказательство этому утверждению, свидетельствует тот факт, что за десять лет эксплуатации прибора, ни одного экземпляра полупроводниковых приборов испорчено не было. Максимальный ток прибора равен 30 микроАмперам.

Читать еще:  Зажигалка из сантехнического тройника своими руками

Механизм пробоя определяется физическими параметрами применяемого материала, типом проводимости, конструктивно технологическими особенностями, мощностью, условиями эксплуатации, коэффициентом использования максимально допустимых режимов, и т. д.

По типу пробои делятся на электрический и тепловой.

Пробой перехода Коллектор — Эмиттер транзистора зависит от рабочего режима его базовой цепи. В приборе для проверки транзисторов это условие нужно учитывать, для этого в базовую цепь необходимо поставить переменное сопротивление для имитации различных режимов эксплуатации. При таком построении схемы можно вывести зависимость пробивного напряжения от базового сопротивления при влиянии внешних факторов.

Зная динамическую кривую рабочих напряжений и токов нагрузки, с помощью такого прибора можно точно выбрать подходящие типы элементов из имеющихся в наличии.

Зависимость пробивного напряжения от сопротивления резистора в цепи базы транзистора.

Следует сказать, что с базовыми резисторами баловаться не стоит. Если их ставить от балды или других мощных приборов, с округлыми формами, плавно переходящих в главные образы других тем 🙂 , то это скажется на работе всей схемы. От их величины меняются рабочие параметры транзисторов.

Вкратце эту зависимость можно описать так:

Чем меньше будет сопротивление резистора Б-Э, тем меньше зависимость пробивного напряжения и тока К-Э от температуры перехода, но эти запирающие резисторы влияют на коэффициент усиления и динамические характеристики полупроводникового прибора.

Величина номинала базового резистора должна обеспечивать необходимый запас разброса рабочих параметров элементов каскада.

Схемы измерений пробивных напряжений и обратных токов при различных условиях на входе транзистора.

Этим прибором можно проверить только величину напряжения только первичного пробоя P/N переходов.

Есть еще так называемый вторичный пробой.

Форма вольт-амперной характеристики в области второго пробоя (U1 — напряжение первого пробоя, U2 — второго пробоя)

Он происходит при определенном сочетании влияющих параметров в основном при больших рабочих напряжениях и токах, даже если они не превышают предельные значения. У любого транзистора работающего в активном режиме при прямом или обратном смещении на переходе Э/Б может возникнуть второй пробой.

Параметры вторичного пробоя в радиолюбительской практике нельзя измерить, потому что не возможно смоделировать условия, провоцирующие такой пробой. Для этого нужны лабораторные условия, необходимое оборудование, опыт работы в этом направлении и соответствующее программное обеспечение, на котором можно гибко моделировать происходящие процессы, влияющие на образование вторичного пробоя.

Чтобы избежать этого явления, нужно внимательно читать документацию на применяемые транзисторы. Изготовители полупроводниковых приборов обычно определяют области их безопасной работы, исключающие возможность появления такого пробоя. Так же, в схемах, где прогнозируется большая вероятность возникновения второго пробоя, следует применять транзисторы с эпитаксиальной базой, ставить балластные стабилизирующие резисторы в эмиттерные цепи, а также применять существующие схемные решения, уменьшающие вероятность второго пробоя.

Практика показывает, что второму пробою подвержены транзисторы, работающие с индуктивными нагрузками в ключевом режиме. Вероятность второго пробоя сужает область безопасной работы высокочастотных силовых транзисторов. Даже при средней мощности они могут выйти из строя.

В справочниках для режима прямого смещения транзисторов, предназначенных для работы в таких условиях, приводятся значения тока второго пробоя.

Для полноты измерений радиоэлементов нужно также использовать:

  • Прибор для проверки коэффициента усиления мощных и маломощных транзисторов.
  • Испытатель транзисторов.

Нюансы

При использовании следует помнить о нюансах и ограничениях большинства транзистор-тестеров:

  • Мощные тиристоры может распознавать как неисправные или как транзисторы.
  • Стабилитроны. Определяет, как диоды. Производителем заявлено нормальное распознавание элементов с напряжением стабилизации менее 4,5V.
  • Микросхемы и трёхногие интегральные стабилизаторы (7805, 7905 и подобные) не определяет и не проверяет.
  • Динисторы не проверяет, из-за их высокого напряжения срабатывания, например, у распространённого DB3 оно больше 30 Вольт.
  • Конденсаторы большой ёмкости также не распознаёт, хотя производитель заявляет пределы измерения от 30 пФ до 100 мФ, «адекватные» значения выдаются до пары тысяч мкФ.
  • Индуктивность измеряется в пределах от 0,01 мГ до 20 Г.
  • Ионисторы не распознаёт.
  • Варисторы видит как конденсаторы.
  • Однонаправленные супрессоры определяет как диоды.
  • Нет защиты входов. Это значит, что вы можете сжечь вход, если начнете измерять заряженный конденсатор, например, или подадите высокое напряжение. Поэтому разряжайте конденсаторы.

Если вы хотите проверить компонент, но у него короткие ножки, то на тестере LCR-T4 можно сделать проверку приложив их к площадке под SMD.

В целом прибор нашёл широкое применение и окажется особенно полезным для начинающих радиолюбителей при покупке первого оборудования для домашней лаборатории. Если учесть стоимость прибора, то со всеми его погрешностями и недостатками можно мириться хотя бы ради удобной функции определения цоколевки и определения ESR у электролитов при диагностике источников питания.

Теперь вы знаете что такое транзистор-тестер, как им пользоваться и для чего предназначен этот прибор. Если возникли вопросы, задавайте их в комментариях под статьей!

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector